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Most of the time on this project was spent on the trajectory planning
problem. As was guessed in the proposal the construction is equivalent to
the classical spline construction in the case that the system matrix is nilpo-
tent. If the dimension of the system is n then the spline of degree 2n — 1 is
constructed. This gives a new approach to the construction of splines that is
more efficient than the usual construction and at the same time allows the
construction of a much larger class of splines. All known classes of splines
are reconstructed using the approach of linear control theory. Currently one
paper is essentially finished and another will be finished before the first of
the year. As a numerical analysis tool control theory gives a very good tool
for constructing splines. However, for the purposes of trajectory planning it
is quite another story.

Consider the following simple situation & = u(¢) and y = z(t) and suppose
that we want to track a signal that is of the form of a simple step function, 0
to the left of zero and 1 to the right. Denote the function by s(t). Suppose we
could track the signal exactly. Then y(¢) = s(t), y = $ and finally u(t) = 3
the derivative of a delta function. We have been able to prove using control
theoretic techniques that the spline construction tracks not only the function
but its first two derivatives. Thus the control will approximate the derivative
of a delta function. Even if we disallow discontinuous trajectories the problem
remains. If the function is piecewise analytic and continuous the control will
still track a derivative of a delta function or the delta function itself. The
problem is that the spline construction is too good. Some improvement can
be achieved by matching the initial states and terminal states but there is
still a problem.

We’re in the process of developing schemes that will relax the constraints
that require that the system pass exactly thorough a sequence of points, but
only require that the system pass within a window centered at the point. I
feel that this will give a satisfactory control. The relation of this scheme to
asymptotic model following is interesting. In the classical asymptotic theory
a signal is given and the control is constructed in order to bring the system
and control together at infinity. Here we are asking that the signal and
the control be brought together at a sequence of points and at fixed times.
After some thought it is clear that the scheme is going to have problems.
If we consider the rather mundane situation of trying to follow another car
very closely we know that in order to maintain a very tight margin very
high accelerations and decelerations are necessary. The exact same thing is
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happening here. [ along with the students will develop a theory to relax the
constraints that impose the conditions of exact matching at specified times.
Acceleration of thirty G’s are probably not suitable for a passenger aircraft.

I have enclose four documents which contain reports of work done under
this grant. The work is proceeding at a very good pace and I feel that we
have made major accoomplishments during this year.
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Department of Mathematics, Texas Tech University, Lubbock, TX 79409
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Abstract

In this work, the relationship between splines and the control theory has been an-
alyzed. We show that spline functions can be constructed naturaly from the control
theory. By establishing a framework based on control theory, we provide a simple
and systematic way to construct splines. We have constructed the traditional spline
functions including the polynomial splines and the classical exponential spline. We
have also discovered some new spline functions such as trigonometric splines and the
combination of polynomial, exponential and trigonometric splines. The method pro-
posed in this paper is easy to implement. Some numerical experiments are performed
to investigate properties of different spline approximations. :

1. Introduction.

Spline functions are well known and are widely used for practical approximation of func-
tions or more commonly for fitting smooth curves through preassigned points. Spline tech-
niques have the advantage over most approximation and interpolation techniques in that
they are computational feasible. Most of the published spline algorithms are for polynomial
splines and the vast prepondera.nce. are for cubic splines. There is a small but excellent lit-
erature on the so called exponential splines and there is an even smaller literature on splines
with more or less arbitrary nodal functions, {9, 3].

In this paper we will present a common frame work for splines that includes polynomial
splines of all orders and generalized exponential splines of all orders. This common frame
work is based on ideas from linear control theory. Let’s recall some basic ideas from control
theory. A linear control system is a differential equation

d ~ L,
Ez(t) = AZ(t) + Bi(t)



where £ € R", # € R™ and the matrices A and B are constant matrices of compatible
dimension. The vector £ is the state of the system and the vector @ is the control. The idea
is that we can use the control @ to steer the state from point to point in the state space R".
We can think of the first component of Z as representing the position of the system and for
appropriate A the second coordinate is the velocity, the third acceleration, etc. A common
situation, for example in air traffic control, is to specific the position that the system must
be in at a sequence of times. So in fact what we have is a set of points through which
the system must traverse at specified times. One could fit these points with a spline curve
and then ask for the control that would move the system along that trajectory. In fact this
can be done but we will show that the control law can be developed from natural control
theoretic principles that will move the system through the points at the desired times and the
resulting curve will be piecewise analytic and will have 2n —1 continuous derivatives, i.e. a
generalized spline. With this framework we can construct a wide variety of spline functions.
If the matrix A is nilpotent then the resulting construction is just that for polynomial splines.
If the matrix is 2 x 2 and one eigenvalue is zero and the other is a nonzero real number then
the spline is the usual exponential spline. In general the nodal functions are the coordinate
functions of the matrix function e4’.

In this paper we give a unified treatment of all of the common one dimensional spline
functions using simple ideas from control theory. It is coming to be understood that there is
a large overlap between linear control theory and elementary numerical analysis. Eigenvalue
methods are know to be closely related to the theory of the matrix Riccati equation (2], there
are close relations between observability and quadrature techniques [8], system identification
and Prony’s method are very similar [1] and now we see that the spline constructions and
basic linear controllability are manifestations of the same phenomena.

In Section 2 we review basic material from the theory of linear control systems that is
needed for the development and give a condition that characterizes the optimal control law
that generates the spline functions. In Section 3 we give the details of the construction
of spline functions using control theory and in Section 4 we classify the possible classes of
spline functions that arise from the control theoretic construction. Ir Section 5 we examine -

in detail some of the particular classes from Section 4 and finally in Section 6 we present a o

series of numerical examples comparing the various classes.



2. Some results from the control theory.

In this section we collect a series of results from linear control theory. Most can be found
in any control theory textbook. See, for example, the book by Brockett, [5].

Consider the linear system:

d -
7 £(t) = AZ(t) + bu(t), te€[0,T], (2.1)
with
01 0 - 0 0 z:(t)
0o 0 1 --- 0 0 z,(t)
A= ¢+ 0 o0 ], k=] ], EHY)= : , (2.2)
o 0 0 --- 1 0 Tn-1(t)
a, a; az --- Gp 1 Zm(t)

and the observation function

y(t) = T Z(t), & =(1,0,---,0). (2.3)
Let us divide [0, T] into n subintervals as

O=to<ty <+ <ty <ta=T,

and define hy = tx — ti_;, the length of the rth subinterval. Our goal is to find a control
law u € C™=2[0, T] that drives the system (2.1) from Z(0) = Z° to Z(T') = #T such that the

observation function y(t) satisfies the interpolation conditions
y(ty) =ax, k=1,---,A—1 (2.4)
Furthermore, u(¢) minimizes the functional
T
/ u(s)%ds. (2.5)
0

Such a control is called an optimal control.

Definition. The system (2.1) is called controllable if for any z° 7, and 7 > 0, there is
a u(t) such that, E .
: T =F(r) 2 A4 / eAT=9)5u(3)ds.
0

Theorem 2.1 : The system (2.1) is controllable if and only if
rank (5, AB,- -+, A™18) = m. : (2.6)
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For the special matrix A as in (2.2), it is easy to verify that

00 ---0
00 - 1 ] -
(-b.a AE, Yy Am—li;) = A S ’ (27)
0 1 .-« % x
1 * -+ % x

and hence the condition (2.6) is satisfied. From Theorem 2.1, the system (2.1) is controllable.

Theorem 2.2 : The system (2.1) is controllable, if and only if the matriz /T e~ AppT =472 s
0

is tnvertible.

For the special matrix in (2.2), we then define
M) = (f - ATBRT A s ), (2.8)
Theorem 2.3 : When the system (2.1) is controllable, a control that moves the system from
#(t) = 1 to Z(D) = fn given by
u(t) = 5Te~4"Y( / t—e""’me"‘r’ds)_l(e"ﬁﬁg — e %51), (2.9)

t
minimizes the functional J(v) = / v®(s)ds among all controls that move the system from
Z(t) = p1 to Z(t) = pr.

Theorem 2.4 : When the system (2.1) is controllable, a control u € C™*[0,T] that moves

the system from &€(0) = &°, passing through & Z(tx) = c, to Z(T) = ZT is given by

u(t) = :z::l B fi(t) + f:’}'igi(t), (2.10)

i=1
with .
o= (T S,
gi(t) = é‘fe’"('"'t)g, . i=1---,m,
where & = (1,0,-++,0),---,€L = (0,--+,0,1), and B ’s, 7" are determined by n — 1 interpo-
lation conditions & &(t;) = ax and m boundary conditions £(T) = . Moreover, the control



(2.10) minimizes the functional J(v) = /T v*(s)ds among all functions v € C™2[0,T] that
drives the system (2.1) from z(0) = Z°, poassz'ng through eTZ(t) = ax, to Z(T) = T .

The construction of the optimal control is based on Hilbert space techniques and is based
on writing the interior constraints in terms of a linear variety defined in terms of the functions
f«(t) and the terminal constraints in terms of the functions g;(t). Once the constraints are
written in terms of linear varieties the form of the optimal control is clear based on the
orthogonal complement of the intersection of the varieties. this is a standard technique and
is found for example in [7] or [6]. The proof of Theorem 2.4 is based on two facts: (i) u(t)
defined by (2.10) is m — 2 times continuously differentiable; (ii) fi's and g;’s aren + m — 1
linearly independent functions. In the following, we verify (i) and (ii).

(i) From the construction (2.10), we only need to show that
ér)(tk)zoy 7‘=0,---,m—2, k:]_’-..,n_l.

Indeed, for allk=1,---,n -1, r=0,---,m — 2,

im () = lim &l (—A) et 5= (-1yeT A5 =0,

t—t,—0 t—tx—0

by virtue of (2.7). Hence fi(t) is m — 2 times continuously differentiable, and so is u(t).

(ii) Set > _yigi(t) =0for t € [0,T}, i.e.,

=1

F(t) = 3. mélertn=0F = fFeAt=9F =,

1=1

with 7 =" ~¢&. Then we have F()(t) = 0 on [0, T], especially

=1

FO(t) =T (-A)E=0, r=0,---m—1.

Therefore,

5B, Ab, - -+, A™"1b) = 07.
In light of (2.7),.”,5' is a zero vector gnd consequently, v; = 0, ¢ = 1,:--,m. So g;'s are m
linearly independent functions.

Next we set o
Br-1fa-1(t) + Y _7vigi(t) =0, t€[0,T]. (2.11)

=1
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If B.-1 # 0, then

n-—l(t ﬁ 27391 (212)
n-1 ;=1

By the definition, fr-1(t) = 0 on (ts-1,%n), So Z‘y;g;(t) = 0 for t € (tn-1,ts) which yields
i=1
4 =0,7=1,---,m, and hence f,_i(t) = 0 by (2.12). This is a contradiction. Then (2.11)
yields 8,_; = 0, and consequently v; =0, i = 1,--+,m. So fa_1 and g;’s are m + 1 linearly
independent functions.
Continue the above procedure by adding fi's one by one, we are able to show that fi’s

and g;’s are m + n — 1 linearly independent functions.

3. Construction of splines by the control theory.

Theorem 2.4 implies that an optimal control for the system (2.1) (with A given by (2.2))
is unique. But in general, 8i’s and ¥’s in (2.10) are difficult to find, we then introduce
a practical procedure to construct a control law that satisfies all the requirements. This

control law actually leads us to a construction of spline functions.

By the existence of a control law, there exists a set of points ..., 2! with ¥ =
ax, k = 1,--+,n — 1 such that the solution of the system (2.1) satisfies Z(te) = 75, k =
0,1,---,n —1,n. By virtue of Theorem 2.3, a control law that satisfies all the requirement
can be defined piecewise as

U)oyt = uk(t), k=1,---,n, (3.1)
where ui(t) is given by (2.9) with ¢ = te_y, t = tk, pL = 7*-1 and jr = Z*. Then equations
to find (n — 1)(m — 1) unknowns in z*,--+,Z""" (recall that = k=1,---,n—1, are
known) come from (n — 1)(m — 1) continuity eonditions on u(t), i.e.,

u(t) = uld (t), r=0,--,m=2, k=1l ,n-1 (3.2)

From (2.9),
- ti
ug(ty) = (A"b)Te'AT“‘(/ e~ BpT e~ AT ds) " (e A EF — e~ A1E* ), (3.3)

th—1 .

- t
upsr(te) = (ATB)Te47( /, Y mASPRT o= ATs gg) " (e A gRHL _ e~ AlEE) (3.4)

k

Next, we shall simplify (3.3) and (3.4). Toward this end, we introduce a change of variable

s = tg_ + ¢ into

ty hx ’
(/ e~ AbhT e~ AT’ds)‘1 = (e~A%- / e~ I-J*b*re"“.r"'cLs"e"“T""‘)'1
0

tx—1

-
.



eA =1 M (hy)eAt -, (3.5)

where M (hy) is defined by (2.8). Substituting (3.5) into (3.3), we have

w8 = (ATD)T e ATh M (k) (e~ Ahe 2% — 1), (3.6)
Similarly,
u{di(t) = (AB)T M(hua) (e Ao 44 — %), (3.7)

Substituting (3.6) and (3.7) into (3.2) yields a linear system for (n —1)(m — 1) unknowns in

fl,...’_i.’"l:

—(ATB)Te A MM (hy)Z 4+ (ATD)T[e™ AT M (hi)e™™ + M (hes1)]Z*
—(AD)TM(hyr)e e g1 =0, r=0,---,m—2, k=1,---,n—-1. (3.8)

By virtue of the existence and uniqueness of the optimal control, the linear system (3.8) has

a unique solution and hence its coefficient matrix is invertible.
In order to solve (3.8), The following quantities needs to be calculated, A", e
and M (k). Sometimes it is easier to use the Jordan matrix of A, denoted by A. There exists

an invertible matrix Q such that A = QAQ™!, and hence

—Ah (e—ATh)’

AT = QArQ—l’ e~ AR — Qe—AhQ-—l, e—ATh — Q—Te—AThQT_ (3_9)
M) = ([ Qe QBT QTe N QTds) ™ = QTH(MQ™, (3.10)

where . |
M) = ( /0 e~ A Q1H(Q1B) e A ds) 1. (3.11)

Substituting (3.9) and (3.10) into (3.8), we then have

—(ATQ_Ig)Te_AThkM(hk)Q_lfk—l + (ArQ_lg)T[e_ATh"M(hk)e_Ah" + M(hk+1 )]Q_lfk
—(A"Q78)T M (hpyy)eA+1Q 1z =0, r=0,---,m-2, k=1,---,n—1(3.12)

Solving (3.8) or (3.12) for (n —1)(m — 1) unknowns in Z*,---,Z""", we then have the control
-
u(t) defined piecewise by (3.1). The solution of the system (2.1) is thus given by
t -
(t) = eM+ / e~V pu(s)ds
0

= QMO + /oteA(‘“")Q‘lgu(s)ds). (3.13)

ORGIAL PASS B

o RoaR MR



Note that zi(t) = z;41(t), ¢ = 1,---,m — 1. So the continuity of {(t) is continuity of
zi41(t) for i < m. Further, continuity of z\™*")(¢) is continuity of u(")(t), r = 0,--+,m — 2.
Therefore, the observation function y(t) = &' Z(t) = z1(t) is a 2m — 2 times continuously

differentiable function that satisfies the boundary conditions
y(0) = Tri1s y"N(T) = x?ﬁ—n r=0,---,m-1 (3.14)
and the interpolation conditions
y(ts) = =¥, k=1,---,n—1 (3.15)

Hence y(t) is a spline function. We see that from the control theory, we can derive quite
general spline functions. Summing up, we have proved

Theorem 3.1 : (1) There ezists a unique function y(t) € C™2[0,T] that satisfies the
boundary conditions (3.14) and the interpolation conditions (8.15); (2) y(t) is the first com-
ponent of the vector function Z(t) given by (3.13) in which u(s) is defined piecewise on each

subinterval [ti_1,tk], k=1,---,n, by
ull(te) = BFemAT(-tod A (hy)(emAhezh — 2*71)
(Q71B)Te ATt Y (he) (e~ MM Q 715 — Q7134 Y), (3.16)

where %, k = 1,---,n—1 are determined by solving the linear systems (3.8) or (3.12) (Note
that 2° £ and z¥, k = 1,---,n — 1 are given by the boundary conditions (3.14) and the

interpolation conditions (3.15)).

In the next section, we will see that these splines can be piecewise polynomials, trigono-
metric functions, exponentials or any combination. As special cases, we are able to recover
classical polynomial splines (odd order) and exponential splines by properly selecting pa-

rameters ay, - -, am in (2.2) for the matrix A.

4. Classification of splines.

The type of the splines is determined by its nodal shape functions. From the control
theory, we are able to construct the nodal shape functions of splines.

In order to see the kind of interpolation functions in Z(t), we only need to consider one
subinterval. Without loss of generality, we use the first interval (fo,2,) = (0, k) where the
solution of the system (2.1) is given by

¢ -
(1) = et + /D A=) Fu(s)ds. (4.1)

8



From Theorem 2.3,
u(t) = gTe"‘T‘(/: e’A’We'AT’ds)‘l(e'A'j??l - . (4.2)
Substituting (4.2) into (4.1), we h.z.we
Bt = A+ AT = AT s 45 M(B) (e~ A 5" — £°)
= QeM[QT'F + M(1) ' M(h)(e™MQTIE - Q7IZ°), (4.3)
where M(h) and M (h) are defined by (2.8) and (3.11), respectively.
Theorem 4.1 : Let A be given by (2.2), let (p1(t),- -, pm(t)) be the first row of the matriz
eI — M(8)™ M(h)] = QeM[I - M(1)T'M(R)Q, (44)
and let (q1(t), -, qm(t)) be the first row of the matriz
e M) M(h)e 4 = QeMM () M (h)e Q7 (4.5)
Then forr =0,---,m —1,

p0) = Giprr, PO(R)=0, i=1,--+,m, (4.6)
¢0) = 0, g(h)=&rn, j=1-um. (4.7)
Proof : From Theorem 2.1 and (2.7), the system (2.1) is controllable. By virtue of

Theorem 3.3, a control that moves Z(t) from Z(0) = z° to Z(k) = Z* is given by (2.9) (with
t=0,1{=h, pL =1° pr = 7!), and consequently

y(t) = &Z(t)
= &l(eM® + /: eAt=9Fy(s)ds)
= AT — M) M(R)|2° + A M(t) M(h)e~ 4 7"
= (;m(t),-- ,pm(t))5°+(q1()- “ gm(t)F

e =i_";zp'(t)+2x_qj (48)

Choose 3° = & #' = § in (4: 8) ‘and we ha.ve

p,(-r)(t) =y"@), r=0,---,m—1.

9 JQRIGINAL PAGE
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Therefore for r =0,---,m — 1,

p(0) = y(0) = 2(0) = £,41(0) = 2%, = i,
pO(h) = yOB) =D (h) = zr(h) =21y =0, i=1,,m.

Then we have proved (4.6). The proof of (4.7) is similar. m

We call p;, ¢; nodal shape functions by the characteristics (4.6) and (4.7). From (4.4) and
(4.5), We see that the nodal shape functions are linear combinations of function entries of
matrices et and eM M (¢)~1. In order to see the type of functions in the spline, we only need
to examine the entries of these two matrices.

In the following, we classify the spline functions derived from control theory. This clas-
sification is based on the spectrum of the coefficient matrix A of the system (2.1) under
different circumstances. We shall concentrate on the case m = 2. The reasons are: (1) The
general situation for large m is very complicated and is difficult to describe precisely. (2)
The case m = 2 has almost all features for the general case. (3) From the practical point of
view, the case m = 2 is the most useful and important case. Let

0 1 1

The eigenvalues of A are \y = v+ VA2 + 8, X2 =7 - V77 + B.

1. v+ B > 0. There are two distinct real eigenvalues. Then the Jordan matrix A of A,

the transformation matrix Q and its inverse are given by
MO 1 1 » 1 A -1
A= = = . 4.9
(0 /\2)’ ¢ (/\1 /\2)’ ¢ /\2—/\1(—/\1 1) (4.9)

At ’
et = ( et 0 ) (4.10)

Then
0 e,\g t

From (3.11) (by changing A to t), we have

N 1 t e—Ms 0 -1 e"’\l’- 0
-1 — —
M(t) - (/\2 _ /\1)2/; ( 0 e—/\gs ) ( 1 ) ( 121) ( 0 e—Ags ) ds

_ 1. ' .(1 _ 6—2,\11)/2/\ (e—(A1+Ag)t _ 1)/(/\1 + A )
T (A —A)? ('(e—(hm)t —1)/( 1+",\2) (1 = e-4at)/2), ? ) , o (411)

and hence

o1 (M= M)y (€7 — M) /(A + Do)
et M) = m ( (c"’\“ _ e/\gt)/(/\l + ) (e"" _ e"\ﬁ‘)/l2,\2 2 ) . (412)

10



l.a. v # 0, 8 # 0. In this case Ay, A2, —A;, —A2 are all distinct. We then have the
exponential spline with basis functions given by linear combinations of e*1*, e=%1¢, e2t) e=22¢,
1.b. ¥y =0, 8 > 0. In this case \; = —A; = /B, the basis functions in 1.a. degenerate.

However, by applying the following limits

l. e—/\gt _ ez\lt l. e/\lt(e—(/\l-{w\:)t - 1) A\t
— e - —_— e 1
ViV W VP S WIS te™
—1\1‘ —_ Agt —/\lt 1 —_ (A1+1\2)f
im =—° = lim - (1—e ) - —te™M?,
Ag——2A1 /\1 + Az A1 4+Az—0 Al + Az
(4.12) becomes
" _ 1 (e,\,t _ e"\‘t)/‘Z/\ _te)\,t
At 1_ 1 1
€ M(t) - 4/\% ( —tC—Alt (cz\lt _ C—’\lt)/zl\] . (4'13)

Hence we have the exponential spline with basis functions given by linear combinations of
e\/ﬁt, e‘\/E‘, te‘/at, te=Vot,

l.c. 8=0, v # 0. In this case, \; = 0 (if vy < 0), or A; =0 (if ¥ > 0). Again the basis
functions in 1.a. degenerate. Assume that A; =0, then A; = A = 2v. From the limits

(ez\lt _ e—/\lt)

. . Mt o_

iy, Th ame =

we have N
At _ 1 0 ~ -1 __ 1 /\t e— - 1
e = ( 0 eM ’ A[(t) - XE e~M_1 (1 _ 6—2,\t)/2 ’ (414)
. 1 At e~ —1
At -1 _

e M(t)" = 13 ( 1—eM (M- e"’“)/? ) . (4.15)

Therefore we end up with the exponential spline with basis functions given by linear com-

binations of 1,¢,e2", e~2. Later we shall further show that this is the classical exponential
spline [9)].

2. 42 + B < 0. There are two complex eigenvalues: Ay = v + iw, Ay = 7 — iw, where
w=+=7T=B.

2.a. v #0, 8 < 0. Evaluating (4.10) and (4.12), we have the exponential-trigonometric
spline with basis functions given by linear combinations of €™ sinwt, € cos wt, e~ sinwt,
e Mcoswt..» * .

9b. v =0, B < 0. Again this is a degenerated case where A\; = ), = iw = iy/=7.
Therefore (4.10) is now

(At ( coswt + i sinwt 0 ) (4.16)

0 coswt + tsinwt

11



Taking the limit ¥ — 0 in (4.12), we then have

eMM(t)!

-1 ( sinwt fw —t(coswt + isinwt) ) (4.17)

= 4? \ —t(coswt — isinwt) sinwt/w

Hence, we have the polynomial-trigonometric spline with basis functions given by linear

combinations of sin /—pt, cos v/—Bt, t sin /—pt, t cos /= [t.

3. v2 + B =0. In this case A\; = Ay = 7.
3.a. v # 0. We have non-degenerated Jordan form in thls case,

(32) ee( ) (0 0) s
e [t te™ Y _ 1t
eh —( 0 em )—e (0 1), (4.19)

M@ = /ote-'m((l) - )(1/7>(1/ )( 2 ‘l))ds
_ /0'6-273((11//1‘_55)2 1/71_3>ds. (4.20)

After some more detailed manipulation (see the next section) we can show that this is the
e, te™ M,

Therefore,

exponential spline with basis functions given by linear combinations of e, tet,

similar to the case 1.b.
3.b. v = 0. In this case, A itself is a Jordan matrix. We compute directly the following

A=<g (1)) e'“:((l) i) (4.21)
M(t)“:/ot<(l) _13)<(1))(0,1)(_13 ?)daz:(_tif?z "t:/2). (4.22)

A M(t) = ( —5/6 /2 ) . (4.23)

quantities:

32t
Then we have the polynomial spline with basis functions given by linear combinations of

*w 1,¢,t%,t3. In the next section, we shall further show that this is the well-known cubic spline
[4].
From the above dxscussmn, we see that we may encounter all kinds of splines by varying

parameters 3 and . Two genera.l cases are 1.a. and 2.a. where we have full sized exponential
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or exponential-trigonometric splines. Degeneration occurs when zero or multiple eigenvalues
appear. The extremal is the case 3.b. when both eigenvalues are zero. It is this extremal
case that draws most of the attention. This is evidenced by extensive investigation regarding
the cubic spline in the literature. Case 1.c. also has been investigated from a different point
of view. But we can hardly find any work regarding the other cases (except l.c. and 3.b.)

listed above.
The situation for m > 2 is similar. Let A;,---, A be eigenvalues of A. When Ay, ---, An;

—A1,++, —Am are all distinct, we have the exponential spline with the basis functions given

by linear combinations of

eMt et L eimt gmAmt,

See case 1.a. When complex eigenvalues appear, we get the exponential-trigonometric splines
with basis functions e***sinwt, e™*** coswt (see case 2.a.). If we have multiple eigenvalues,
the terms like

teM  tsinwt, te Mcoswt, tleM,

will appear in basis functions (see cases 1.b., 2.b. and 3.a.). Finally, zero eigenvalues will
introduce polynomials into basis functions (see case 1.c.) and the extremal situation is that
all eigenvalues are zero in which case we recover polynomial splines of order 2m — 1 (see case

3.b.).

5. Examples of splines.

In this section, we shall work out in detail some classes of splines. We shall explicitly

" construct the nodal shape functions and the linear system needed to solve for the unknown

parameters.

1. Our first example is the case 3.b. which turns out to be the classical cubic spline. We
first construct the nodal shape functions. From Theorem 4.1 we need only to calculate the
first row of matrix (4.4) and the first row of matrix (4.5). Let t = h in (4.22), and we have

iy = (58, ) <2 (s ).

Thus from (4.21) and (4.23), we have
At At -1 _ 1 t 1 t —t3/6 t2/2 E h h2/2
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_ < é ; ) _ ( —2t3/h3.+ 3t2/h? t(—tZ/h"i+2t/h) )

cAtM(t)'lM(h)e““'

( -2t3/h3+3t2/h2 t(— t’/h2+2t/h) ) ( ! —lh )

( t3/h3 + 3t2/h? t(t’/h2 —t/h) )

Hence

P(t) = 1+2(2)° = 3(2)  palt) = ¢l1+ () — 25 (5.1
@) = —23P+3(1)%  ad) = (I 1 (52)

They are precisely the nodal shape functions for the Hermit interpolation.
Next we set in (3.8), r = 0, £¥ = (&, Bk)7, and hy = hiy1 = h (by this, we are using
equally spaced intervals). The equation (3.8) is now

— BTe~AThM(R)F*! + BT [e ATR M(R)e~ 4 + M(R)|E* — BT M(h)e~h&*+1 =0,  (5.3)

for k = 1,---,n — 1. Substituting
—ATh _ 1 0 12 h h2/2 19 1 h/2
e "M(h) = ( “h o1 ) ( K2 B33 —hj2 —h?/6
- AT 12 1 ~h/2
Mt = e =15 (g, SR ).

AT _an_12( 1 /2 1 A\ _12( 1 —a/2
e M (h)e M‘?ﬁ(—hm -h2/6>(0 1 )“iﬁ(—h/z h2/3)’

into (5.3) yields,

6 2. [ ax 8 6 2. [«
(p,ﬁ)(ﬂ:_I ) +(0,7;)(;: ) _(ﬁ’_ﬁ)(ﬂ:: ) =0,

or
3 .
Br-1 + 458 + ,3k+1 = E‘(ak-ﬂ - Olk—l), k= L---,n—1 (5-4)
In the matrix form (5.4) is .
(410 --00\( A\ [ a@m-aw \ (F)
4 1 .. 0 0 ,32 Qs — 0
014 .---00 - 0
L S 1) D P B BT
N : h :
0 00 -4 1 ﬂn— Qpn_1 — Qp-3 0
\000 -1 4/\ By \ @n—anz | \Ba)/

14



This is precisely the same linear system as we construct the cubic spline. After solving Bi’s
from (5.5), the desired cubic spline can be expressed piecewisely on the subinterval [tx_y, t4],

k=1,---,nas
y(t) = ax—1P1(t — ti=1) + Br-1p2(t — te=1) + axqa(t — tee1) + Brgqa(t — ti-1),

where p1, p2, q1, g2 are given by (5.1) and (5.2).

2. The second example is the case l.c. which is the classical exponential spline [9]. The
nodal shape functions are again derived from the first rows of matrices (4.4) and (4.5). We

use the Jordan form. let A; = 0, and A; = A (4.9), and we have
(11 a_1fAa =1
o=(51) =55 1)
Using (4.14) we can calculate (by setting ¢t = k),

- o A eM—1 7 (1 + e~**)/2 1
M(h) = A ( e—/\t -1 (1 _ e—’ZAt)/Q ) = C(’\) ( 1 /\h(l - e—Ah)—l ) ’

2)3
Ah(1 4+ e=2h) = 2(1 — e™*h)’
Recall (4.14) and (4.15), and we have

C(A) =

QeM[I - M(t) ' M(R)]Q™
F(E)(8 &)= )

1+ e"\")/2 1 12 -1
Ah(1 — e=2#)! )li ( 0 1 )
1 e’\‘ CA (1 1 At e™M—1
0 e )“,\T(o At 1—eM (eM—e)/2 |’
(

[

( Ah

(2 o ) (0 T
("

pi(A (/\ t)),

where
/\t(l + e—Ah) -~ (1 — e—Ah) — eMt=h) + e~

MA(1 + e ) — 2(1 — e-2)

nAt)=1- , (5.6)

15



et —1 h l—e? ¢t 1—e 1—(—1_—':’-%53 eM — 2 4 e

Ait) = - — —_ . .
r(A;t) A 1+e—»-_21—_;;ﬁ[ A (h+ A ) AR Ak !
(5.7)
QeAtM(t)—lM(h)e—AhQ—_l
e (11 1 0 At e M —1 _
oo L0 0 e eM_1 (1—e™2M)/2
(1 +e7*)/2 1 1 0 A -1
1 Ah(1 — =)t 0 e 0 1
(11 At e 1 (14 e24)/2 e~ M _
T A Lo A )L 1—eM (eM—e))2 1 Ah(eM — 1)71
A =1
0 1
( (A1) g(At) )
where
a(Mt) =1-p(At), (5.8)
h l—e™ ¢ 11— ;ﬁ\.if:;—l eM—2 e M 3
O R e vy Tl b v s VI R VR VR

Ak
(5.6) - (5.9) are nodal shape functions for the classical exponential spline.
Next we set in (3.12), r = 0, ¥ = (a4, 5)7, and ki = hry1 = h. The equation (3.12) is

now
—(Q7B)Te MMM (R)QTIE + (QTIE)T [N P M(R)e M + M(R)Q 'S
—(Q ) TM(h)eMQ 1F* =0, k=1,---,n—L (5.10)

» Spbstituting
(-1,1),

S| =

Q)T =

i = o (3 8 ) (T o

- e

o (A ).

e Ah(e*r — 1)1
M(R)e™ = [ S ()T = C() ( (1472 \h(erh A_h_l)-l ) ,

- 16



et = o (g S ) (CFT ey )

= C(A) ( (1 +:_j\;\;h)/2 C_M_ 1)-1 ) :

Ahe=3h (M

into (5.10), canceling C()A)/A%, we have
—(=1,1) (1 +eh)/2 1 A -1 Qg1
’ e ane =11 Jlo 1 )\ s
14+ e 14 e A -1 a
+(-1,1) ( L4 e AR(1 4 e~2h(1 — e=M)~1 0 1 By

_(_1’1)( (1 +t‘:1"”')/2 /\h(ef;ihl)—l ) ( Z)\ —11 ) ( g:: )

1 —e 2 _2)\he=?h Ah(1 + e™2) _
2wy Pt ) [—5‘:‘;:“— —(1+e™)B:

1 —e
= A —(amn—a), k=1--n-L (5.11)

a

0,

or

This is the linear system for the exponential spline, it can be written in the matrix form as

{ a(Ash) b(A;h) 0 0 0\ /[ B \
b(A;h) a(A;h) b(A;R) --- 0 2
0 b(A; ) a(Ajh) .- 0 0 B
(:) (:) 0 a(/\~;h) b(/\.;h) B
\ 0 0 0 - b(A;h) a(A;h)J \ Bn-1 /
( a;—ap { b(/\;oh)ﬂo \ ’
3 Q4 — 0 .
. = : - : , (5.12)
Qn.1 — Qn-3 0
\ tnmcaz )\ BA B S

where

=2MhY _ (1 — =27k — e=2Mh _ -k
AR(1 + e )—(1—-e )’ b(A; h) = 31 e 2)\he
Ah(1 — e~*h)2 AR(1 — e=2h)2

a(Ah) =6

Again, after finding Bi’s, the spline can be expressed piecewise by the nodal shape functions. -
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It is interesting to examine the limiting case for the exponential spline obtained above.
Applying the L’Hospital’s rule three times, we are able to verify that
liil(l)a(/\; h) =4, ’l\i_r’r(l’b(/\; Ry=1. ° (5.13)
We then recover (5.5), the tridiagonal systems for the cubic spline. Further we can verify
that (by successively using the L'Hospital’s rule)
- py =3 I BT N VA JHP VAT 3

q1(t) is one of the nodal shape functions for the cubic spline given by (5.2). The other three
nodal shape functions can be verified similarly. So the cubic spline is the limiting case for

the exponential spline 4.1.c. when A — 0. This is not a surprise from the following limit

regarding matrix A of the system (2.1),

(01 01
l‘i’é(o A)—(o 0)’ (5.14)

where the left hand side is the matrix A for the case l.c., and the right hand side is the

matrix A for the case 3.b. We can also examine the limit when A — oo where

/\lim a(A; h) =6, /\lim b(A; k) = 0, (5.13)

lim pi(Ait) = 1— &, lim qu(Xt) = = 516
Jim pi (i) =1—+,  lim ¢(Xt) =, (5.16)
/\lim p2(At) =0= '\lim q2(A; t). (5.17)

Substituting (5.15) into (5.12), we then have B¢ = (k41 —ak-1)/2h , k =1,---,n—1, which
is the central difference scheme. We see that (5.16) gives the nodal shape functions for the

linear interpolation. In order to verify (5.17), it is convenient to rewrite

h e~ (Ah + 2)e™*h 2 h

P = T T T GRS a DR F e 2= e (A T= e
1 C(A) g M =2 AR g N h At
- ytoE -t ——-— S — T ole 2)},
. oW 1o e _ gMi=h)  p(eAi=h) _ 9g=2b 4 )
Q2(A, t) = K [—t(l — € ) + \ + \ 1— e—Mh

So the linear spline (the piecewise linear interpolation) is the limiting case for the exponential

spline 4.1.c. when A — oo.
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3. The third example is the case 2.b. when 8 = —w?, v =0 and
0 1
a=(20)

1
Ci = w*h? —sin?wh, C; = %sin 2wh +wh, C3= sinwh, C4= 3 sin 2wh — wh.

Denote

Following the same procedure as the first example, we have the nodal shape functions as

following
Cipi(t) = C)coswt + Cy(sinwt — wt coswt) — Cawt sinwt,
Cip2(t) = wh?sinwt — Cst coswt + Cyt sinwt,
a(t) = 1-pft),
C1q2(t) = hsinwh(sinwt — wt coswt) — tsinwi(sinwh — wh cos wh).

When evenly spaced intervals are used, the tridiagonal system for unknowns B is given by
b(w; h)Bx—1 + a(w; k) Bk + b(w; h)Br1 = c(w; h)(aks1 — ak-1), k=1,---,m, (5.18)
where
a(w; h) = 2wh —sin2wh, b(w;h) = sinwh — whsinwh, c(w;h) = w hsinwh.

It is easy to verify that,

lim 3a(w; k) 3b(w; k) 3c(w;h) 3

= — =1 — —
i o S Rt R TS R 4

which are the coefficients for the tridiagonal system of the cubic spline. We can also verify
that at the limit w — 0, the nodal shape functions pi(w;t) and gi(w;t), ¢ = 1,2, have the
relative nodal shape functions of the cubic spline as their limit when w — 0. Indeed, we

recover the cubic spline from this trigonometric spline when w — 0.

4. The fourth example is the case 3.a. where § = —? and
0 1
A= .
( -7 Z )

C=1-—2e1h 4 ¢47h _ 4y2R2e~ 20k,

Denote
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Computing the first rows of matrices et — eA*M(¢)"!M(h) and e M(t)"'M(h)e=4, we

have the nodal shape functions

Cpi(t) = e "Ch(2yh — 242h% — 4t 4 24%ht — 1) + ™ (1 +1t)
+e77A) (gt 4 202kt — 2k + 292R2 — 1) + e7TATO(1 — 1),
Cpa(t) t(e™" U= L e=7) 4 7 TCA)(2yht — 2yA? — t) + e YA (29R% — t — 29ht),

ai(t) 1 —p(t),
Cqa(t) = e "OF(h —t = 2yht) + (e £ e h=0) (¢ — b) + e+ (2yht + b — 1),

Evaluating (5.3) in the current case, we get the tridiagonal system (5.18) with

a(wih) =a(r;h) = €P(1—e ™ —dyhe™™™),

b(wih) = b(y;h) = e (1 +7h) — (1 - 7h),

c(wi;h) =c(y;h) = ~*h(1—e ).
Again we can verify that the cubic spline is the limiting case for this exponential spline when
~ — 0.

5. Our last example is a case for m = 3 when

010 ,
A=|o0oo01]. (5.19)
0 00 ‘
The system (2.1) with A given by (5.19) produces the quintic spline. In this case,
1t t%/2
et =01 t |, - ~ (5.20)
00 1
. t3/(20) —t'/8 t3/6 -
M) = / e B Te AT ds = | —t4/8 /3 —t2/2 |, (5.21)
° t3/6 —t¥/2 ¢
240/h% 120/h* 20/H°
M(R) = [M(R))'=3] 120/h* 64/h® 12/ |. (5.22)
20/h® 12/R* 3/h

Using (5.20) - (5.22) to compute the first rows of matrices e4 — e#*M(t)"*M(h) and
eAtM(t)"1M(h)e~4*, we then have the nodal shape functions for the quintic interpolation:

) = (h —t)° h? + 3ht + 6t2 t—t3 h? — 3ht + 6t
n(t) = T[ + 3ht 4 6¢°], (h()—ﬁ[ — 3ht + 6t°),
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p(t) = S Llhera], o = Sme-n -
) = EDT g = S

In order to compute the parameters for the optimal control, we set in (3.8) r = 0,1 =

(ak, By 7%)T, and hg = ki1 = k. Then except (5.3), we also have

— (AD)T e ATh M (R)Z*1 + (AB)T[e~4TA M (R)e™ 4% + M()]Z* — (AB)T M(h)e~**z*+! =0,
(5.23)
for k = 1,---,n — 1. Substituting (5.20) - (5.22) into (5.3) and (5.23), after some tedious

symbolic manipulation, we have the following linear system,

8(Brs1 = Br-1) + h(—7k—1 + 6% — Tr41) = %(fk—l — 2fk + fes1); (5.24)
TBr-1 + 168k + TBrs1 + A(Te=1 — Ta41) = %(fkﬂ = fr-1), (5.25)

for k =1,---,n — 1. If we arrange the unknowns as (8, k71, - vy Ba-1, hYn—1), we will get
a linear system with a banded 6-diagonal coefficient matrix; if we arrange the unknowns
as (B1, s Bac1s hm1, s A Yn) = (B'T,h'?T), we will have a linear system with a block

tridiagonal coeflicient matrix.

s ETV[F)_[Ff
EEIART]
where
(16 7 O 0 0] [ 6 -1 0 0 0]
7 16 7 0 O -1 6 -1 0 0
0 7 16 0 O 0 -1 6 0 0
S = . y H= )
0O 0 O 16 . 7 0 0 O 6 —1
| 0 0 O 7 16 | | 0 0 O -1 6 |
[ 0 1 0 - 0 0]
-1 01 - 00
0 -1 0 - 00
E = . .. < e y
0 0 0 - 01
| 0 0 0 - -1 0
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Ll

[ 15(f2 — fo)/h — TBo — ko 20(fo—2fi + f2)/h + 860 + Ao
15(fs — f1)/h 200fi —2f2+ fa)/h
15(fs — f2)/h 20(f2 —2fa+ fu)/h

15(facs = fas)/h 0(fas = 2oz + fa-1)/h
L ls(fn - fn—Z)/h - 7,311 + h'}'n J L 20(fn—2 - 2fn—1 + fn)/h - 81371 + h7n _

In general, if A is a m x m nilpotent matrix with 1’s on the super diagonal and 0’s
g

elsewhere, we shall recover all odd degree polynomial splines (with degree 2m — 1).

6. Numerical experiments.

In this section, we test the behaviors of different splines numerically. Equally spaced

intervals are used for all computations.

Example 1. Comparison of the cubic spline with the quintic spline.

0 -1<t<0
f(t)={1/2 t=0

1 0<«<t<Ll

Test function 1.

For the cubic spline, we pose, in (5.5), the boundary conditions:
50 =0= ﬂn;

and for the quintic spline, we pose, in (5.25), the boundary condition:

Bo=0=p, 7%=0=7n.

Recall that 3; and «; are the coefficients for the first and the second derivatives, respectively.
The spline functions are then constructed for A = .2, h = .1, h = .05, and h = .025. Graphs
are plotted in Figure 1(a), 1(b). We see that the qualitative behavior of the two splines are
* almost same, but the quintic spline has a little better accuracy.

One interesting phenomenon is that the mesh refinement does not effect the maximum
overshoot of the spline approximation. Since this is very similar to the Gibbs phenomenon
for the Fourier series, we term it as “Gibbs phenomenon” of splines. In fact, all spline
functions have this property.

Test function 2.
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For the cubic spline, we pose the boundary conditions:
Bo = =30e'°, B, =0;
and for the quintic spline, we pose the boundary conditions:
Bo=—30e°, B.=0, = =960e? +,=0.

We use the mesh size A = .2, and plot the graphs in Figure 1(c), 1(d). We see that the
quintic spline gives much better approximation in the neighborhood of z = —1 since it has

the correct concavity information at £ = —1 which the cubic spline does not have.

Example 2. Properties of the classical exponential spline case 1.c.

The test function is the same f(¢) as in Example 1. We have observed that for small
parameter A, the behavior is much like the cubic spline. This is not surprise from (5.14). The
interesting fact is: For the moderate A, the graph is very much the same as the cubic spline
(Figure 2(a)). If we fix the parameter A and refine the mesh, we observe Gibbs phenomenon
as in the cubic and the quintic splines. But if we fix the mesh (here we choose A = .1) and
increase the parameter A\, we see that the approximation converges to the piecewise linear

function (Figure 2(b), 2(c), 2(d)). This confirms our theoretical analysis made in Section 5.

Example 3. Properties of the exponential spline case 3.a.

We use the same test function f(¢) as in the examples 1, 2.

For small parameter v, the approximating feature of this spline is also like the cubic spline
including the Gibbs phenomenon. But when we fix the mesh (here A = .1) and increase the

parameter 7, an unexpected wiggling appears at t = 0 (Figure 3(a)-3(d)).

Example 4. Properties of the exponential spline case 1.a.

0 1
a=( 5 )

and we have A, = —1, A, = —2. Again, the testing function is f(¢) as in the previous

Here we choose

examples.
We plot the approximation for A = .1, A = .05, h = .025 in Figure 4(a), 4(b), 4(c),

respectively. again, we observe the similar behavior as that of the cubic spline.

Conclusions
1. Gibbs phenomenon exists for all splines.
2. The quintic spline is recommended if the concavity is important.
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3. From the approximation point of view, the classical exponential spline is preferred

when the function has points of discontinuity.

A final remark.

For the discussion purpose, we constructed spline approximation in this paper by intro-
ducing the nodal shape functions which is not necessary in practical computation. From the
framework we have established based on the control theory in Section 3, all we need to do
is: providing the matrix A, the vector b to the linear system (3.8), solving (3.8) numerically
to obtain Z*'s, and hence the control law u(t) (see (2.9)). After we have the control u(t), the
expected spline function is given by the first component of Z(t) defined by (3.13). Based on

our analysis, we are able to choose different splines by simply selecting entries of the matrix

A.

The significance of this investigation is two fold: first, it exposes the relationship between
two important fields - control theory and spline approximations. This enables us to discover
new spline functions and to investigate, systematically, the properties of the spline approx-
imations. Secondly, it provides a practical way to construct different splines from a same
simple framework. From our experience, we feel that this construction is more natural and

easier than the traditional approach.
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Figure 2.

(a)
Exponential, =20, Parameter=1
e | ] 1
E
[
0.5~ —
_— ——
0 I !
-1 0.5 0.5
(c)
Exponential, n=20, Parameter=100
1 1 ! T
0.8 -
0.6 —
0.4t~ J —
|
I
{
!
f
02— I —
!
|
. |
» I
!
P ! _
0.5 0 0.5

~1

(®)
Exponential. 1=20, Parameter=10
E I T T
05 —
|
0 1 ~ ! -
-1 -0.5 0.5
(d)
Exponential, 1=20, Parameter=1000
14 [ -

0.8

0.6 [~

i

0.4 ;

f

!

02 |

|

{

J

0 ] J I {
-1 0.5 0 0.5




Figure 3.
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35 Constrained Mechanics and Variational Problems

Robert Hermann

Ever since my graduate student days, I have been Impressed and
influenced by the elegance and systematization of Mechanics and
Variational Calculus contained in Elie Cartan's book "Lecons sur les
Invariants Integraux". In the period 195 9-69, I expended considerable
effort in the development of Cartan's point of view in many books and
articles. In this paper (which will appear as a Chapter in "Interdisciplinay
Mathematics", v. 30), I will give a quick development of some of the
material in my books "Differential Geometry and the Calculus of
Variations" and "Geometry, Physics and Systems".

Another purpose in developing this geometric form of the Equations
of)Mechanics in this Volume is that it fits in with my strategy of
investgating mechancis with 'singular’ features, such as Delta Functions,
Discontinuities, Shocks, etc. As I will show In Volume 30 the C-O-R
constructions of Generalized Functions enable one to define 'differential
forms with generalized coefficients', thus preparing the ground for the
material in this Chapter serving as foundation for Mechanics with Singular

- Data, the Theory of Splines on nonlinear manifolds, etc, Further, when
combined with the Computational Methods under development at the Al
Lab of MIT by Gerry Sussman and co-workers this material will be useful
in the development of Air Traffic Control methodology.

Another gaol of my work is to develop a general structure for ODE
systems, to be used in both 'smooth' and 'generalized' (in the sense of
Colombeau, Oberguggenberger and Rosinger) Mechanics, Control and
Numerical Analysis. Since Martin, Crouch have shown that,-in the linear
case, Splines may be constructed from linear contro! system so attention
will, in the future, focus on the Splines associated with Generalized Inpouts
to Nonlinear Control Systems. Work of Sastry and Mon tgomery indicates
that imporant examples of such systems will be the Left-Invariant Control
Systems on Lie Groups, which have been much studied in recent years by
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researchers interested in Integrable Systems, Robotics, and Aircraft
Guidance,

1. Introduction.

There has been considerable interest recently in constrained
mechanics and variational problems. This is in part due to Applied
interests (such as 'non-holonomic mechanics in robotics') and in other part
due to the fact that several schools of 'pure’ mathematics have found that
this classical subject is of importance for what they are trying to do. I
have made various attempts {2, 3, 4, 5, 6, 8, 11, 15, 20, 26, 27] at
developing these subjects since my Lincoln lab days of the late 1950's. In
this Chapter, [ will sketch a Unified point of view, using Cartan's approach
with differental forms. This has the advantage from the C-O-R viewpoint
being developed in this Volume that the extension from 'smooth' to
'generalized’ data is very systematic and algebraic. (I will only deal with
the 'smooth’ point of view in this Chapter; [ will develop the 'generalized
function' material at a later point.) The material presented briefly here
about Variational Calculus and Constrained Mechanics can be found in
more detail in my boooks, "Differential Geometry and the Calculus of
Variatons" "Lie Algebras and Quantum Mechanics", and "Geometry, Physics
and Systems".

Here is the basic set-up. Suppose given the following data:

A smooth paracompact manifold X (1.1)
T(X) is its tangent vector bundle (1.2)
A set {6, wl, ..., o™} of smooth 1-forms on X. (1.3)

8 is called the action form, {wl, ..., ®®m} are the constraint forms.

Let us suppose given a curve in X:
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x={t->x(t) eX:astsb}}: [a b] > X (1.4)

dx/dt =v = {t > dx/dt(t) e T(X):a s t sb}}: [a, b] -—> T(X) (1.5)
is its tangent vector or velocity curve.

(In this Chapter, I suppose all such curves are also smooth.)

Definition. The following real number associated to the curve 1.3 is called
the action:

a(x) = f[a, p10([dx/dt](1))dt (1.6)
The following field of 1-covectors along the curve 1.4 is called the force:

{t > [dx/dt](t))) de} (1.7)

1.6 and 1.7 are the basic data for both 'mechanics' and 'variational
calculus’.

Now, let us deal with 'constraints':

Definition. The curve 1.4 satisfies the constraints associated with
the 1-forms {wl, ..., oM™} iff. it satisfies the following set of Pfaffian

differential equations:
0 = ol(dx/dt) = ... = om(dx/dt) (1.8)

I'will show how the basic Equations of Mechanics can be described
very compactly and elegantly in terms of this data.

2. The First Variation formula and the Cauchy characteristic
curves of de.
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Keep the data of Section 1. Let us suppose that only the 'action' form
8 is give, without any constraints. Let x be a smooth curve in X, given as in
1.4. Suppose that's’, 0 1ss <1, is a deformation parameter and that
{s —> xs: [a, b] --> X} is a smooth one-parameter family of curves in X,
reducing to the given curve x at 's=0'". For t ¢ [a, b], set:

v(t) = tangent vector to the curve {s --> xs(t)} at 't= 0’

The field {t -> v(t) e Xx)} of tangent vectors is called an infinitesimal
deformation of the curve x. Then:

d(a(xs))/ds| s-0 | (2.1)

is called the First Variation of the action function function 1.6
along the curve x pointing in the direction of the vector field v.

Using the formula 1.6 for the Action, the Cartan Family Identity:
'V(8) =V]de +d(V]e)': between a differential form and a vector field, and

Integration-By-Parts, we have the First Variation Formula:
d(a(xs))/ds| s=0 = [ia, by -[dx/dt] de](v(0)dt + 8(v)(b) - 8(V)(a)  (2.2)

Remark. This formula is a variant of a General Principle:
The Variational Derivative of the Action is the Force (2.3)
It also suggests the following:

Definition. A curve {x: t --> x(t)} is called a Cauchy characteristic
curve for the 2-form de iff:

[dx/dt] |de = 0. L (2:4)

If x satisfies 2.4, then the First Variation 2.2 vanishes for any infinitesimal
deformation v which satisifies the following conditions:
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8(v)(b) = 8(v)(a) =0 (2.5)
Conditions 2.5 are called Transversality Conditions.

At this point, 'symplectic structures and foliations’, '‘Hamilton's and
Lagrange's Equations' (for special choices of 8), etc. enter in a very natural

way. See [2, 4,6, 8,11, 20, 27, 29].

3. The differential equations of constrained extrema and the
augmented action form.

Let us now suppose that {8, wl, ..., o™} is given, as in 1.3. Introduce
Lagrange Multiplier Variables:

fA1, ooy A} (3.1)

Consider them as Cartesian coordinates of a copy of Rm. On X x Rm,
introduce the following augmented 1-form:

Baug =0 + Aol + ... + ApoD (3.2)
Then,
dBaug = d6 + dhjAwl + ... + DApA™ + (3.3)
Ado! + ... + Apde™®

Definition. A curve {t --> x(t)} in X is an extremal of the constrained
variational problem associated with the differential form data 1.3 if and
only if there is a curve in X x Rm of the form-

{t —> (x(t), Aa1(1), ..., Am(t)} which is a Cauchy characteristic curve of dBaug.

In other words, the 'extremas' are the images under the Cartesian
projection map: {X x Rm —> X} of the Cauchy characteristic curves of dBaug.

Theorem 3.1. A curve {t--> (x(t), Ai(t), ..., Am(t)} is a Cauchy
characteristic curve for the 2-form 'd6aug' if and only if the following

conditions are satisfied:

0 = wl(dx/dt) = ... = oM(dx/dt) (3.4)
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dx/dt|de = -A1()[dx/dt] | do! - . Ag(t)[dx/dt] | dem (3.5)
- [dA(t)/de] ol . - [dAm(t)/dt] wm

Proof. Let v be a tangent vector to the manifold X x R™. Then:

VJ deaug = VJ (dG + d}\.]_l\wl + ...+ d}\m/\(.l)m + del + .+ lmduﬂ)

=v[de + v(A)wl + .. + v(A)o! - 0l(v)dA] - ... - o(v)drg (3.6)
+ A1[v]dol] + ... + Ap[v] dwm]

3.6 involves one-forms on X x Rm, Notice that the only terms on the right
hand side of 3.6 which involves {dA, ... drm} are the terms
'~ wl(v)di] - ... - oM(V)dAy'. If the tangent vector v is to be Cauchy
characteristic these forms must vanish. This leads to the condition 3.4. The
conditions 3.S now follow from inserting 3.4 into the Cauchy characteristic
conditions 'v | d6 aug = 0" and using 3.6.

gqg.e.d.

Remark. This result expands the treatment to the 'constrained’ case that
Cartan gave for the 'unconstrained’ variational problem in "Lecons sur les
Invariants Integraux". See [2] for the connection with the traditional
'Lagrange Variational Problem' as expounded in Caratheodory's book and
for the definition and properties of 'symplectic foliations' and further
detail.

4. The differential equations of constrained mechanics.

There is considerable confusion in the Literature beween the
Lagrange Variational Problem (or ‘constrained extrema') and 'constrained'
(and 'non-holonomic') mechanics'. Iwill now describe the latter. Suppose
again given the following data:

A smooth paracompact manifold X (4.1)
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T(X) is its tangent vector bundle (4.2)
A set {8, wl, ..., om} of smooth 1-forms on X. (4.3)

Definition. Let {x: t --> x(t)} be a curve in X. It is said to be a trajectory
of the constrained mechanical system associated with the data
4.1-4.3 iff. the following conditions are satisfied:

0 = ol(dx/dt) = ... = wm(dx/dt) (4.4)

There is a curve in X x R of the form
{t > (x(1), w1(t), ..., um(t)} such that:

[dx/dt] [d6 = ui(twl ., u(t) om (4.5)

In other words, 4.4-4.5 define an ODE system whose solutions are curves in
X x R, The 'constrained mechanics trajectories' are the projectons in X
under the Cartesian map projection {X x R —> X} of the solution curves of
the ODE system 4.4-4.5.

5. ‘'Holonomic' constraints. Equivalence of the Constrained
Extremal and Mechanics equations in the 'holonomic’ case.

Suppose given the following data:

A smooth paracompact manifold X (5.1)
A set {8, wl, ..., oM} of smooth 1-forms on X. (5.2)
Indices 1 <a, b, ... sm (5.3)

Definition. The cbnstraint forms {03} are said to be holonomié— iff. there
is a matrix {w3p} of 1-forms such that:

dwa = Zb ®3pA @b (5.4)
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Remark. Locally, condition 5.4 is equivalent to the following, more
'‘geometric’, condition:

The Pfaffian System {2 = 0} is Frobenius Integrable (5.5)

Let us now combine conditions 5.4 and the Constrained Extremal
equations 3.5. The following equations result:

dx/dt|de = - Zabxa(t)[dx/dt] ] (03pA wb) - Za[dxa(t)/dt] w2 (5.6)
Rewrite this as follows:

dx/dt] d8 = - 2iapha(t) [(wip(dx/dt) wb) - wb(dx/dt) wi (5.7)

- 2 [dra(1)/dt] w2

The second term on the right hand side of 5.7 vanishes as a consequence of
the Constraint Equations 4.4, resulting in the following:

[dx/dt] | d6 = - Duapha(t) [(wRp(dx/dt) wb) - 2a[dra(t)/dt] w? (5.7)

Theorem 5.1. Let 5.4 be satisfied and let the curve {t --> x(t)} be a

soludon of the Constrained Extremal Equations. Then, {t --> x(t)} is also a

solution of the Constrained Mechanics Equations 4.4-4.5.

Proof. That functions {t --> pa(t)} exist satisfying 4.5 is evident from 5.7.
q.e.d.

Here is the converse: o
Theorem 5.2. Let 5.4 be satisfied and let the curve {t --> x(t)} be a
solution of the Constrained Mechanics Equations 4.4-4.5. Then, {t -> x(1)}
is also a solution of the Constrained Extremal Equations.
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Proof. We must show that the existence of functions {t --> A3(t)} satisfying
5.7 is a consequence of the existence of functions {t --> ua(t)} satisfying
4.4-4.5. Examining the right hand side of 5.7, we see that the {u3(t)} can be
obtained by solving an ODE whose coefficients depend on the {3(t)}.

q.e.d.

6. The constrained mechanics equations in a 'Hamiltonian' form.
So far, we have been working in the context of general manifold

theory. Let us specialize now to the situation which is close to the

'Hamiltonian' formalism in the traditional particle mechanics case.
Suppose given the following data:

n is an integer (6.1)

The following range of indices: (6.2)
1<i,j,...sn

X=RZ2n+l = RnxRoxR (6.3)
{ql, pi, t} are Cartesian coordinates on X. (6.4)
{(q, p, ) -> H(q, p, 1)} is a smooth real-valued (6.5)

function on X, called the Hamiltonian.

8 = Zipidgi - Hdt (6.6)

dH = ZiHidqi + 2;Hidp; + Hedt, (6.7)

where {Hj, Hi, H;} are the partial derivativesof -~
the Hamiltonian function with respect to the
‘canonical’ coordinates 6.4.
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Theorem 6.1. d6= 2i(dgi- Hidt)a(dp; + Hidt) (6.8)

Proof. Follows from 6.7 and 6.6, by a direct compuation, which is left to te
reader.

Theorem 6.2. Let V be a smooth vector field on X. Then:
V] de = zi(V(qi) - HiV(t))(dpi + Hidt) - zi(V(Pi) + HiV(t))(dq! - Hidt) (6.9)

In particular, if:
V(g =1 (6.10)
then:

V] de = 2(V(qi) - Hi)(dp; + Hidt) - 2Zi(V(pp) + H)(dqi - Hidt) (6.11)

Proof. Apply the operation 'V]| ' to both sides of 6.8. 6.11 follows from
substituting 6.10 into 6.9.

Theorem 6.3. Keep the hyopotheses of Theorem 6.2 and condition 6.10.
Suppose further that:

V] do = u(t)Ziaidql (6.12)

where {a;) are smooth functions on X and {t --> u(t)} is a real-valued
function of 't". Then, the following relations must be satisfied:

V(qi) = Hi (6.13)

V(pi) + Hi=pn(taj e (6.14)

2(V(py) + HyHi =0 | (6.15.
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Proof. 6.13-.15 results from combining 6.11 and 6.12, and comparing
coefficients of independent coordinate differendals on both sides of the
resulting differentdal form relation.

Theorem 6.4. Let V be the vector field on X defined by 6.10 and 6.12.
Then, the orbit curves {t -=> (q(t), p(t), t)} of V are solutons of the
following ODE's:

dqi/dt = 3H/ap; (6.16)

dpy/dt = - dH/dqi + (D)3 (6.17)

2iai(p(t), a(v), H[dgi/dt =0 (6.18)

Proof. Follows from 6.13-6.15.

Remark. Equations 6.16-6.18 form an ODE system of (2n+1) equations for
the (2n+1) 'unknowns: {pi(t), gi(t), u(t)}. They are the Hamiltonian
version of the lagrange Equations of Motion for Constrained
Mechanics. (In this case, there is only one 'constraint, namely 6.18. The
case of more constraints can be handled similiarly.)

7. Final remarks about generalizations.

The material in Section 6 suggests a Generalization of material about
Symplectic Manifolds, Geometric Quantizaton, etc. from the traditonal case
abstracted from Particle Mechanics (as in the work of Dirac, van Hove,
Segal, Kostant, Souriau, etc) to a abstract sitaution paralleling the material
developed in Section 6.

situation of Section 6, suppose that we are on a manifold X, with the
following relation:

de = Q- dHadt (7.1)
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'H' and 't' are smooth functions on X. 8 and Q are, respectively, a 1- and 2-
form on X and Q is closed. Suppose that Vg is a vector field on X such that:

Vy/de = uw (7.2)
VH(t) =1, (7.3)

where 'o' is a 1-form defining the constraints and 'w' is a function on X.
7.1-7.3 imply:

Vyl| Q- V(H)dt + dH = po (7.4)

This relation generalizes the duality relation between 'infinitesimal
symmetries' and 'conserved functions' that plays the basic role in the
'geometric quamtization' theory of unconstrained conservative mechanical
systems. I plan to study this Geometric Structure further in a later
Volume.
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Abstract

In this report the problem we are going to study, is the interpolation of a set
of points in the plane with the use of control theory. We will discover how
different systems generate different kinds of splines, cubic and exponential,
and investigate the effect that the different systems have on the tracking
problem. Actually we will see that the important parameters will be the two
eigenvalues of the control matrix.
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1 Introduction

I would like to begin by thanking my advisor Pr. Anders Lindquist for
initiating contact with Texas Tech. I would also like to thank Pr. Clyde F.
Martin for being my advisor at Texas Tech.

In this report we will look at a way to store signatures. We want to
do this by storing only a minimal amount of points on the signature curve,
and stiil be able to reconstruct the curve by interpolating these points. The
interpolation will be performed by splines, and we will look at the common
splines-problem from the control theory point of view. We can construct a
trajectory of a system that passes through a specified set of points. and thus
interpolate the points.

Two questions that need to be answered arise. First, when is it possible
for the system to pass through the points? Second, when there are many
ways to accomplish that, what sort of conditions should we demand that the
system fulfill in order that we get a unique solution.

The question of when it is possible to interpolate the points will be an-
swered in the general case in section 2 Reachability and for our particular
system in section 3 The System.

An algorithm to find the solution is developed in section 4 Derivations.

The choice of boundary conditions is discussed in section 3 Boundary

conditions.
In section 6 Results the results of tests done upon parametric curves are

displayed and discussed.

A summary in Swedish is provided in section T Resumé - Summary in
Swedish.

The programs I have been using are included in section 8 Programs. In-
cluded among the Matlab programs is an altered version of the original Mat-
lab program quads8.

When we have answered the two questions, we have to decide what kind
of system we will use for the interpolation. We can easily imagine that we
would get to completely different curves if we asked a pedestrian to walk
through a set of points and if we asked a cyclist to ride his bike through the
same points. In the first case we would get (if we suppose that man is lazy),
linear interpolation, and in the second case we would get a smooth rounded
curve. This is the same as in our case where we have exponential and cubic

parametric splines.
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2 Reachability

In this section we will determine under what circumstances it is possible to
take a time invariant linear system from a point Xp at time ¢y to a point Xx;
at time t;. It is a vital property to us, because, in order to interpolate we
have to be able to pass through the points. We will call a system completely
reachable if it has the property that this can be done in any positive time

for any two points.
This is a classical control theory question, and it is answered by the

following well known theorem, which was at least implicitly discovered by
Kalman.
Theorem 2.1 Suppose that the system below is given,
x = Ax+ Bu
(2.1)

Cx

Y

where A isn xn and B is n x k. Then it is completely reachable if T =

[B,AB,A’B,..., A" 1B], is full rank.

In order to prove this and understand how the reachability concept can be
characterized by the matrix I, we will have to look at the general solution

of equation 2.1.

t
x(t) = edlt=tolxy + [ (=2 Buy(s)ds (2.2)
to
In order to have the desired state x; at time ¢; the following equality must

be satisfied. .
. 1
x1 = eAlti=to)ye, 4 / eA11=9) Bu, (s)ds (2.3)
to

The question of reachability is now easily seen to be the question of whether
there are any solutions to the mapping L : & — R™ such that

t
Lu 2 /’ 1 e"(“")Bu(s)ds =x; — eA(tx—to)xo Ty d (24)
to

Since we recognize L as a linear operator, it is as always very fruitful to use
a theorem from the general theory of functional analysis [4, p.250].
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Theorem 2.2 If X, Y are complete inner-product spaces and A:X — Y is
a linear continuous operator then

JmA = ImAA”

We know that R™ is a Hilbert space, but we have to look at what kind of
space U is. We choose to introduce the following inner product for i/

(u, vy = /2‘1 u(t)'v(t)dt

and it can be checked that U becomes a Hilbert space. We know that there
is a adjoint operator L* : R*— U such that

(d, Lu)gn = (L'd, u)u

and we get the adjoint L* of the mapping L through this equation

ty
d,Lu)gn = d' / e*(11=9) Bu(s)ds
t

- / ; (B'e¥®=d) u(s)ds = (L*d, u)y
to

We thus have a linear mapping W & LL® : R"~ R", that is, it is actually
only a matrix operator.

ty ,
LV é LL' —_ / eA(tl—s)BBleA (tl—")ds

tp

With only the basic knowledge about matrices we will now be able to prove
the following lemma

Lemma 2.1 Let A be n x n and B be n x k. Then, for all to, t; such that
to < t1 we have

ImW (to, t,) = Im [B, AB, A’B,..., A" B
Proof: We will do this by showing that Jm[ € JmW and JmW C Jml.

[Jml C ImW]
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Let a € RetW, which implies that 0 = a’'Wa = [;! a’eA(1=) BB/ (1) ads,

i.e.
t
/t-o

Ble.-i'(!l-’)a = O’ Vs € [to, tl]:

Bled'tt=9aids =0

from which it follows that

l.e,

i—l}' —o’B( ) =0.

This implies that (B, AB. A?B,..., A" 'B]'a = 0. That is, for an arbitrary
a € RertlW we have a € Ret[” which implies that KetWW C Rerl” and by a
theorem from fundamental algebra this equals IJmI’ C IJmW.

[TmW C ImI]
Suppose a € JmIV. Then there exists a x € R™ such that a = Wx, and
hence

a= Z AJB/ = s) Blett=9)xds

from which it is obvious that a € Im[B,AB, A’B,...] and by Cayley-
Hamiltons theorem that a € JmI', which concludes the proof. O

The main theorem of this section will follow as a direct consequence of

the lemma.

Proof:{Theorem 2.1] By lemma 2.1, x; —e{1=%)xy £ d € R* and IJm[ = R"
implies complete reachability.O
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3 The System

We will consider the system with the state and dynamics given by

: %X = Ax+ Bu
X = ,
Y y = Cx
Yy
where
0 1 0 O 0 0
0 /\1 ;. Qo 10 1 000
A= B = C =
0 0 0 1 00 0010
Bi B2 0 A 0 1

This gives us the property

and the system dynamics will look like

{

And it gives us the following [’

/\1:i: + a y + agy' +’U1
Ay + Bz + BT +ug

2 W

r0 0 1 O AL Qs IV
1 0 AN o azfB2 + A} a; + az(M + A2) T2z
00 0 1 B Az L3z
L0 1 B2 A fi+Be(M+ A2) azfy + A} L4z

where

(3.3)

) (3.6)

s T
I8
[

r4.8 4
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(Ti7 = a2+ A}

Fis = a1 +az(A + A7)

Tor = a3+ @281 + a232(20 + Ag) + A3

To8 = 23 +ar(M + A2) + az A+ ad Ay + @Al
Faz = 51+ B2(M + A2)

F3s = afa+ A3

F.;J = C!gﬁg + ,’31(/\1 + /\2) + ,Bg/\% +‘ 132/\1/\2 + ,Bgz\g

| Tas = o132+ a281 + a282(\ +2X2) + A3

As [ is easily seen to have full row rank, by simply looking at the first four
columns. The class of systems we are going to consider in this article will all
have the desired property of complete reachability, by Theorem 2.1.

4 Derivations

Given a set of points in the plane {(zqo,¥0),(Z1,%1),---:(Zn,¥n)} and the
corresponding time points {fg,t1,...,t.} we would like to find the control
functions {ug, uy, ..., un—1} that takes the system through the points at the

specified times.

Let’s study the control uy : ( Xk ) — ( Xe+1 )

te et
As t € [tk, tis1] the state of the system will be

» 4
x(t) = e?t=x, + [ e Buy(s)ds (4.8)
te
and as we want the state of the system to be X1 at time #x4) we get the
following condition.

tk
Xppy = eAltn=ty, 4 * eAlte+1=9) By, (5)ds (4.9)
e
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The solution ui to equation 4.9 that minimizes the norm of the control
signal is then given by

‘s ¢ - ’ -1
ug(t) = Ble™" </‘ i g pleA ’ds) (e"""“x;ﬁ.l - e"*"‘x;:) (4.10)
k

The control would be specified completely by equation 4.10 if we knew the
whole state-vector at each interpolation point. We know all (z, yx) but we
do not know the (£&,yx). To determine the 2(n + 1) unknowns we have to
apply some conditions on the solution, and our first choice will be to require
that the control is continuous,

Assumption 4.1

Uk (tes1) = Uksr(tee1)s k=0...n-

This will give us 2(n — 1) conditions and will leave only four unknowns. We
will apply the additional conditions on the boundary and we will have to
come back to this in section 3 Boundary Conditions.

In many applications it is just the shape of the trajectory that matters.
and not the velocity that the system tracks the trajectory with. In these
cases it makes it much easier to assume that the time between each point is

a constant.
Assumption 4.2 Let tep —tp = h.
Assumption 4.2 can be used to simplify the integral in equation 4.10.

th oY
/ e pRem s = {(r=s—t} =

te

h 1 !
e—At,, / e—A‘rBBIc—A de e—A ti
0

—

v~

matrizconstant

Definition 4.1 R
Mé/ e~ATBB'e~'"dr
0



4 DERIVATIONS 10

We can now rewrite expression 4.10 as

u;,(t) = BIB-A'“—"')A/I—I(C—Ahxk+1 - X;‘) (4.11)

Using this expression we will now investigate how the continuity condition
in assumption 4.1 looks.

uk(tkH) = B’e_Althf'l(c—Ahxk.,.l - Xk) =
B'M™ Y (e xpp2 — Xe41) = Wks1(tes1)
We can rewrite this condition using
Definition 4.2
VA =) M"e"”‘
W & e MMl MY

giving the equation the simple form

B (Z'xx — WXgy1 + ZXi42) =0, k=0...n-2 (4.12)

In block diagonal form

Xo
[z -W Z ... 0 0 01| x:
0 2 -W ... 0 0 0 X2
A A P =0 (4.13)
| 0 0 0 ... Z0 -W Z ]| Xa1
Xn

Now, we have to look at what the unknowns are. The vector in equation 4.13
is made up of subvectors

Xk =
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consisting of two knowns and two unknowns. By partitioning the submatrixes

W, Z as

. 21.

Zn,

W=1|w; wye w3y wy |, Z2=1|21 22 23 24 |= ;
Z3.

24.

and using the notations given in the following the definition, we can keep
the unknowns on the left side and move the position coordinates over to the
right hand side.

Definition 4.3

xP* = z
y
\(vel — T
Y
Wa wa
VV,B = B'| w, w.4]= =T
Wy Wyq
w w
wB = B'| w, w.3]=[w21 23]
41 Wq3
zZB = B
lu

2. 2z ]__ 222 %24
2 N 242 Z44

_ | 1 223
241 243
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And we get the system

] r xgel 1
[ zf -Wwpf zB ... 0 0 0 xvet
0o zF -wg ... o0 0 0 xyet
0 0 0o ... =WEF ZB o xuel,
0 0 0o ... zB -wf ZB || x¥,
Lox
r xgos -
[zB -wf zB ... 0 0 0 1| =5
0 zB -—w?f ... 0 0 0 x5°
0 0 0 ... -WZ ZzZB8 o0 X2,
0 0 0 ... ZB -—wB ZB || X%
- N i Xf\o" ]

As we evaluate the right hand side, we get a constant vector. Depending
on what kind of boundary conditions we choose to use, the derivations differ
from here. We will deal with the most common cases, each case in turn,
beginning in the next chapter.

5 Boundary Conditions

In order to get a unique solution to our problem, we had to apply the con-
tinuity condition and the boundary conditions. The continuity condition is
a rather natural condition, but the boundary conditions have to be studied
more extensively. The four most common choices of boundary conditions in

the one dimensional case according to [2] are
1. Zero velocity at the first and at the last point.
2. Specified starting and ending direction.
3. Natural boundary conditions, y” = 0.

4. Periodical conditions.
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We will look at how the two dimensional equivalent of choice number 1
and 2 affect the curves, and for which the same derivation is valid.
Item 3:s two dimensional equivalent, # = § = 0, requires a derivation and

will be studied in subsection 3.2.
We will avoid dealing with condition 4 as it only complicates the calcula-

tions, and would only be natural and interesting if we were to write the same
word twice, connected with itself as RogerRoger.

Because the effect of the boundary conditions are similar at both bound-
aries we will restrict ourselves to only talking about the starting point.

5.1 Known velocities at boundary

We have assumed that we also know x3* and x:*. Moving these over to the
right hand side, we get a block diagonal matrix system to solve.

-wg zZB ... 0 0 [ xe¢ 7] [ @ ]
zZp -wB ... 0 0 xye! Q,
: : : : : = : (5.14)
0 o ... -wp ZE x, Qn_>
0 0 ... zP WP ||x ] [ Qe
Where
0 = —ZBx5 + WO - ZEx5 - Z7xg"
Qo = -Z5x2 + WA - 2o

_ B pos B pos B pos B vel
Q"—1 - —Zrlxﬁ—2+Wr xn-—l_Zruxfl —Zluxn

This can easily be solved, and with a linear increase of time. Having solved
the system above we now know all the states of the system in the interpolation
points. We will now use equation 4.11 for the control, and insert it into

equation 4.8 to get the trajectory.

t—t ,
x(t) = eAli-t) (x;: + / ‘e"A"BBe*"dr M~ (e %1 — xU)
0

fork = 0...n-1 )
t € [tk,tk.,.l] (5.15)
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As we can see from equation 5.15 the fundamental matrix and the integral
is the same for all k and only has to be evaluated for ¢t — tx between 0 and h,

once and for all.
5.1.1 Zero initial velocity
We can choose to set

Assumption 5.1

(i.Os yO)
(ZnsPn)

With this condition, we will let the system start up in whatever direction
that minimizes the enerzy norm of the control signal and takes the system
to the second point.

As we know from one dimensional control theory, a system with a transfer
function with zeros in the numerator will start off in the opposite direction
to where it is going. Such undesired properties should certainly be avoided in
our tracking problem. In the case where oy = a3 = 31 = B4 = 0, the states
x and v are independent, vielding two one dimensional transfer functions. It
is easily seen to have no zeros, which is good.

Otherwise, we will have to look at the two dimensional transfer function
given below:

1

X
st — (M + M)+ (A1Ar — az52)s? — (a1 32 + a2fh)s — a5

T(s) =

s(s = Aa) @1+ aes
X 5.16
Br+B2s s(s—M) (5.16)

This is a bit more tricky, and we will have to find the Q and D of least degree
that is a solution to the equation

and satisfies
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It is easy to verify that the choice

_ g sG=M) (ot aus)
Qs)=1, Dls)=| _3 L8.5) s(s—2)

is a solution to equation 3.17, and there exists X(s) and ¥'(s) so that equa-
tion 5.18 is satisfied. From Q(s) we can see that the system has no zeros.
The zero initial conditions should thus not give us any problems.

5.1.2 Derivative approximation

Instead of setting the velocity equal to zero, another alternative is of course to
specify a starting velocity. However, this requires that we make a good choice,
to avoid situations as exemplified below. Using a bad direction and a high

velocity boundary condition on y = z°, we get the graph of figure 1. Even
as we are using n=40 to reproduce the curve, the bad boundary conditions

are still ruining the tracking.

0.8+
0.8¢
X1 d

02F

o

-1.5 -1 0.5 9 0.5 \ 1.5

Figure 1: Trajectory of system tracking y = z?, with badly specified starting
direction

As discussed in [3, p.86], the fact is that when we set the boundary
conditions in the parametric case, we do not only specify a direction, but
also the speed in that direction. The greater the speed, the greater impact
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the boundary conditions will have on the solution. We are thus forced to
make a good choice, and we would like the choice to get better the more
interpolation points we are using. A simple choice that satisfies this is

Assumption 5.2

. X, — Xo
(Jio,yo) = ——I—h——

. . Xn — Xn-1
(Imyn) = A

which imply that we will set off from the first point in the direction of the
second point, and arrive at the last point in the direction from the next last
point.

Another way of deciding the initial velocity would be to use the same
technic as in Bezier curves and choose the settings graphically. This would
probably be the best way to get the desired properties of the signatures. As
discussed in [3] the choice of boundary conditions will affect the whole curve,
and the solving of the blockdiagonal system must be done over from scratch,
making this method a bit slow. If we are going to do this only once to store
a signature it does not matter. What matters with this method is that it
adds four more parameters to be stored, and we could probably get equally
good results just by increasing the number of interpolation points by two.

5.2 Constant velocity

Suppose we want to use the boundary conditions

Assumption 5.3

This will let the initial direction and constant velocity of the system be
decided so that the control energy is minimized. Using the system dynamics
equations 3.7, we get the equation system below.
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Al a Zo ai1lo
] 0) = - .
{52 /\2][%]4-110() [51%] (519)
where
ug(0) = B' M (e™x; — xq) (5.20)
B'Zx, - B'M™'x, (5.21)

Now, by using partitioned matrixes as in section 4 and the following defini-
tion,

-1 -1 -1 -1
. 2 m ms; m
Definition 5.1 U & m'_‘l o, U £ 4 b
my M M2z M43
we get the system
A a -
VO U xet 28k = (5.22)
B s

0 (84 os o3
= (Uru - [ ,31 01 }) xg - Zfixf

In a similar way we get the equation at the other boundary.

A
([ 5 ] + WP~ Uzu> xer - Zfxid, = (5:23)
R

Adding these two equations to equation 4.14 yields a blockdiagonal system
to solve. This system is two blocks bigger than the one in section 3.1, but it
can also be solved with a linear increase of time. And once it is solved, we
can still use equation 5.13.

A comparison between the three boundary conditions, BC=1 zero initial
velocity, BC=2 derivative approximation, and BC=3 zero initial acceleration
is made in section 6.
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6 Results

The first tests with the algorithm were done with matrices A with both
eigenvalues equal to zero, A; = 0,A2 = 0, and a1 = a2 = 5, = 3. = 0.
This produces cubic parametric splines, and makes the calculation of the
fundamental matrix easy. The cubic splines produce smooth curves, but were
also able to reconstruct a cusp much better than vou would have guessed at

first, as shown in figure 2.
11\". /

0.8f
o.ayr
R A d
0.6+
0.5+
Q.4F
03h
02t

(R

i
Q

-1 08 06 -0D4 02 0 02 04 a6 0.8 1

. . 2 . . . .
Figure 2: Reconstruction of y = x5 with cubic parametric splines where

N

n=10.

If we look at the function y = £5 we know that this function describes a
cusp. But if we parameterized it like z = t3,y = t* we see that both z and
y are smooth cubic functions of ¢, so it is not very remarkable that it can be
reconstructed well.

When we used A-matrices with nonzero eigenvalues, and decoupled z
and y coordinates, i.e. a; = az = f = B, = 0, we were able to generate
exponential parametric splines with the basis functions 1, At ettt e~Mt and
1, \gt, et e3¢ for the z and y coordinates.

The result of taking big eigenvalues is almost linear interpolation, which
can be good for certain applications, but not if it is to be used for storing
signatures. It is quite obvious that the roundness of a persons signature is
one important factor of it’s characteristics. Therefore, it’s vital that one of
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o sr
i d 7k
(1 (13
sk 13
L1d 4
3+ ab
2t 2¢
1 (13
0 . . ‘ . 0 . .
-] 2 4 L] 8 10 12 [+] 2 4 [ 8 10 2
Figure 3: Graph of signature Per, reproduced with A; = 1,A; =11n the left
figure, and A; = 100, A2 = 100 in the right
1000 ¢ 4000
soof 2000+
[} of L
L
-so0b -2000 [
1000 —  — 4000 T -
9 02 0.4 0.8 ¥ } 1 12 1.4 16 1.8 2 Q 2.2 04 [-X } 08 1 12 1.4 1.6 1.8 2

8

-2000 b
~4000
1000 i . e . s 4000 i n i " . A " "
1] 02 0.4 9.8 os 1 12 14 1.6 1.8 2 Q 02 04 LX) (¥ ) 1 12 1.4 18 1.8 2

Figure 4: Graph of control signals in figure above.
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data stored on the signature is the eigenvalues of the A-matrix, as can be

shown in figure 3.

Figure 4 shows the corresponding control signals. In the Ay =1, Az =1
case the linear part of the control is dominating, and in the \; = 100, A, =
100 case the exponential part is dominating. It is also evident that the
magnitude of the control signals is greater in the case of larger eigenvalues,
but that is not a problem for our fictitious system.

In the case of nonzero ai,as, i, 3. we get a coupling between the z
and y coordinates. This will give us very complicated basis functions, like
polynomials times exponentials times sine- and cosine-functions.

As with all approximation methods one should always investigate how big
the errors are. To do this we had to somehow determine the distance between
the original curve and the interpolating one. The tests were performed on
known parametric curves, so we had an explicit expression for the points on
the original curve. We had to try to find the nearest point on the original
curve to the point on the trajectory. This was solved aumerically with the
“Golden Intersection algorithm” . For the method to work we have to assume

two things :

1. The section of the original curve between the two interpolation points

nearest in time is convex.

to

The point on the original curve nearest the point on the interpolating
curve lies on the section in item 1.

As an error estimate [ have calculated the distance between a number of
points on the reproduced curve and the original curve and divided with the
number of points. We have applied this error estimate method on four dif-
ferent curves and with different number of interpolation points and 40 points
between each of these. '

points | BC=1 BC=2 BC=3
n =10 6671.1  5821.1  4513.9
n=20 1028.4 765.6 502.1
n =100 8.8 5.9 3.5

Table 1: p units of error for unit circle.
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4
T4 Al A8 44 A ¢ W M M ) “a Al 48 -as a2 ) L2 w4 4 4 AB A8 A4 4F 1 L2 4 8

Figure 3: Graph of circle, reproduced with n=10 and A, = 10,4, = 10,
BC=1,2,3

6.1 Four test curves

The first curve we tested was the unit circle. This very round curve was
tracked best by the cubic splines, but the exponential splines did a good job
too, as can be seen in figure 5 and tabie 1. We can also see that the error
was smallest in the case of zero initial acceleration boundary conditions.

[PR-1 4
c.4F
%A d
0.8y
sk
el
K14
u2r

Aty

21 08 06 -a¢ -Qa2 0 a2z 04 08 08 1 21 08 08 A4 a2 1 a2 aé 08 08 1

Figure 6: Graph of y = |z|, reproduced with n=10, n=20 and A\, = 10,A; =
10, BC=2

Next, we looked at a curve with the opposite properties, linear and non-
differentiable, y = |z|. The error is mainly located between the two points
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points | BC=1 BC=2 BC=3
n =10 3430.3 3446.8  3430.3
n =20 ) 972.6 972.6 972.5
n = 100 40.7 40.7 40.7

Table 2: u units of error for y = |z|.

next to the non-differentiable point. As could be guessed the tracking of
the curve y = |z| got better the bigger the eigenvalues of the A matrix
were, the error was reduced to 142 u units for \y = A, = 300 in the case of
BC =1 and n = 10, but for bigger values the numerical calculations failed.
Using negative eigenvalues gives the same error as the positive, which can be
expected since we have a symmetric curve and time interval and by looking
at the basis functions. The results with different boundary conditions were
very much alike, as seen in table 2.

This was the only case were BC 3 did not give us the smallest error.

Can we get a smaller error with any choice of the coupling parameters?
Yes, for example by choosing oy = —a2 = 3 = =53 = 10, we get the
error 3249 p units for n=10. Choosing these parameters could thus be a way
to reduce the error, but by using n = 12 instead, we got the error 2506 u
units. So we do not get a more efficient way to store it, unless we can find
parameters so we get below 2306 p units.

points | BC =1 BC =2 BC =3
n=10 6506.6 5313.7 3842.9
n=20 1014.4 725.4 460.9
n =100 8.8 5.8 3.4

Table 3: 4 units of error for cycloid.

points | BC=1 BC =2 BC=3
n=10 | 13897.6 11664.8 8867.6
n =20 2100.5  1531.0  1001.7
n =100 17.7 11.8 7.0

Table 4: g units of error for prolate cycloid.
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2r 2
18- 1.3[
|
1.8k 18
1.4 1.4k
12F 12+
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oab o8k
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Figure 7: Graph of cycloid, BC= 2, reproduced with n=10, n=100 and
A =10,A, =10
3r 3r
2sf 25+
2F 2+
154 15+
1+ 1+
oSt 05k
oF ok
QS5F 0.5
X -3 -2 -1 0 [ 2 3 T N 3 -2 -1 o 1 2 3 4

Figure 8: Graph of prolate cycloid, BC= 2, reproduced with n=10, n=100
and A\; = 10,4, =10
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Finally we look at a cvcloid.

r = wt-—sinTt
1 —coswt

Q:
|

and a prolate cycloid.

y = 1-—=2cosxt

It is evident that the cusp and the crossover do not cause any problem. as
could be expected since we are using a parameterized interpolaat.

YWe can compare the diference of the graphs in figure 7 and fgure 8,
where we are using one crude approximation with n=10 and one extensive
approximation with n=100. This time it is evident that the error is mainly
locazed at the boundaries. In table 3 and table 4 we can see that the best
resuits came from using constant velocity boundary conditions.

Looking at table 3 and table 4 again, we see that the error decreases at
an approximately cubic rate as the number of interpolation points increase,
which is much better than the quadratic decrease that can be seen in table 2.

My guess is that this behavior comes from the fact that the curve y = |z|
does not have a differentiable parameterization.

6.2 Applied on a signature

Included as figure 9 is a scanned picture of my own signature. I have tried
to pick some roughly equidistant points on the signature, (According to the
scale indicated on the axis.) and used che interpolation algorithm we have
been studying to reproduce it. The reproduction is made with n = T4,
A, = A» = 10 and no coupling between the two coordinates. For boundary
conditions I have chosen to use constant velocity, since it has been the most

successful condition.
As can be seen we get a very close resemblance between the original and

the reproduction. How close is hard to say because we do not have the
signature given as a parameterized function, therefore we are not able to
calculate the error as before.

The things characterizing the signatures, are also the things that are hard
to recover with the interpolation. Such as the turnover in the connection from
the “P”, and the cusps in the “r”. To get a good reproduction, an equidistant
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Figure 10: The reproduced signature
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distribution of the interpolation points is 00t enough, more points has to be
concentrated around the characterizing areas.

7 Resumé - Summary in Swedish

Lagring av signaturer kan goras pa manga sitt. Vihar valt att lagra ett antal
punkter pa signaturen, och sedan reproducera denna genom att interpolera
punkterna med splines.

Genom att anvinda vilkdnda resultat inom systemteori s& kan man gener-
era olika sorters splines genom att andra pa nigra parametrar. Jag har nytt-
jat denna metod fOr att generera parametriserade splines i planet. Man inser
smart att man maste infora randvillkor pa lésningen. och valet av dessa far
inte ske hur som helst eftersom de paverkar hela 18sningen. Darfor har jag
lagt ner en hel del arbete just pa denna punkt. De basta resulteten har jag
erhallit genom valet att ha konstant hastighet vid dndpunkterna.

En av de saker som karaktiriserar handstilar ar dess rundhet. Denna kan
ges en direkt Sversdtining i egenvirdena till svstemmatrisen, och vi kommer
alltsd valja att lagra dessa utover punkterna pa signaturen.
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8 Programs

The programs in Matlab and Maple that were used to implement the algo-
rithm developed in this report follow.

8.1 Matlab Program

To make it easier to understand the structure of the program, the following
flow charts describe how the programs are traversed.

run(BC,nn) Fraluates the parameterized function in nn pomnis.
o - poimts(nn)  +— XX(nn),YY(nn) |

Applies the algorithm on the points in K.

° ——-{ alg(R.xvel0,xveln) or alg2(R) J
alg, alg2 Fualuates the matriz integral M.
. —-f quad8mod(int) HrquadSStpmod(int)J
Evaluates an error estimate.
o — dist . helpdist |

XX, YY J—[

The loops marked with an unfilled circle is only available when the inter-
polated points are given by the parameterized function (XX(t),YY(t)).
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function error=run(BC,nn);

%BC % Type of boundary conditioms
% 1 = zero initial and final velocity.
% 2 = heading for first point, last.
% 3 = zero initial and final acceleration.

% If nn is specified, runs alg with nn points given by XX,YY.

% Othervise runs alg with points given by ginput.
global n h alphal alpha2 betal beta2 lambdal lambda2
global errorcalc ctrlsignal

clg

%%, Setting of parameters W/
alphal=0;

alpha2=0;

betal=0;

beta2=0;

lambdai=10;

lambda2=10;

% Decides what steps are going to be made

errorcalc=1; % error estimation
ctrlsignal=0; % plotting of control signals
if nargin ==

(x,yl=ginput;
R(1,:)=x’; R(2,:)=y’;
else
R=points(an);
end;

n=length(R)-1; % Number of interpolatiompoints -1.
h=2/n; % Time inbetween points

%% Plots a circle at all the points thats interpolated %4

hold on
for i=1l:n+1

28
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plot(R(1,1),R(2,i),’0")
end;

%Y Calling alg with the prepared data %
if BC ==
error=alg2(R);
else
if BC == 2, xvelO=(R(:,2)-R(:,1))/h;
else xvelO=zeros(2,1);
end;
if BC == 2, xveln=(R(:,n+1)-R(:,n))/h;
else xveln=zeros(2,1);
end;
error=alg(R,xvel0, xveln);
end;

%% Loop to allow graphic alterationm of BC. %A

b=input(’'"1" for graphic mod of BC, "0" to quit
while b == 1,

xvel0=10*(ginput (1) ’-R(:,1));

xveln=-10*(ginput (1) ’-R(:,n+1));

clg

hold on

for i=1l:n+1

plot(R(1,1),R(2,i),%0")
end;
error=alg(R,xvel0,xveln);

b=input(’"1" for graphic mod of BC, "O" to quit DK

end;

end;

');

function R=points(an);
% Forms R with the help of XX, YY.

29
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% R = 2x(nn+1)-matrix.

global a b h

a=1l; b=a;
h=2/an;

for 1= 0:mn
R(:,i+1)=[XX

end

end;

(-1+i=h); YY(-1+i=h)];

fupction res=XX(t);

global a b

res= a*t*pi-b*sin(t*pi);

end;

function res=YY(t)

global a b
res= a-b*cos
end;

(t*pi);

function error=alg(R,xvelO,xveln);
%“ R = Matrix of interpolatiompoints, x0 ... xm.

pA first row
% xvel0, xveln

global a b A B

= x-coordinates, second row = y-coordinates.
Boundary conditions

C n h alphal alpha2 betal beta2 lambdal lambda2

global errorcalc ctrlsignal

%4 The System

A={[ 0 1 0
[ 0 lambda

WA

0]
1 alphal alpha?2]
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[0 0 01]

[ betal beta2 0 lambda2]l;
B=[[0 0]

{1t 0]

(o o]

(0 111;
c={[1 0 0 0]

(0 0o10ll;
%% Calculation of the integral from O to h in m steps %%
m=40; %, number of points between interpolationpoints
tol=1le-08; % the numeric error tolerance

Mtau(:,1:4)=zeros(4);
tau=0;
for j=1l:m
oldtau=tau;
tau=oldtau+h/m;
Mtau(:,4*j+1:4xj+4)= quad8mod(’int’,oldtau,tau,tol)
+ Mtau(:,4*j=3:4%j);
end;
M=Mtau(:,4*m+1:4*m+4);

Y%, Forming of the Matrixes for the Blockdiagonal system %/

e_Ah=expm(-A*h);
Minv=inv(M);
ZZ=Minv*e_Ah;
WW=e_Ah’*ZZ+Minv;

WL=[WW(2,2) WW(2,4); WW(4,2) WW(4,4)]; A Partitioning matrixes
ZLU=[22(2,2) 2Z(2,4); 2Z(4,2) ZZ(4,4)];
ZLL=[22(2,2) ZZ(4,2); 2Z(2,4) ZZ(4,4)];

WR=[WW(2,1) WW(2,3); WW(4,1) WW(4,3)];
ZRU=[Z2Z(2,1) 2Z(2,3); 2Z2(4,1) 2Z(4,3)];
ZRL=[ZZ(1,2) 22(3,2); ZZ(1,4) ZZ(3,4)];
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%% The boundary conditions %%

xvel(:,1)=xvell;
zvel(:,n+1)=xveln;

%W, Forming of the right side of the Blockdiagonal system 4%

for i=2:n
Omega(:,i)=ZRL*R(:,i—l)-WR*R(:,i)+ZRU*R(:,i+l);

end;
Dmega(:,2)=0mega(:,2)+ZLL*xvel(:,1);
Dmega(:,n)=0mega(:,n)+ZLU*xvel(:,n+1);

Y% Gausselimination to produce upper triangular system W

DD(:,3:4)=WL;

for i=3:n
zd=ZLL*inv(DD(:,2*i-3:2*1-2));
DD(:,2%i-1:2*%1)=WL-zd*ZLU;
Omega(:,i)=0mega(:,i)+zd*0mega(:,i-1);

end

Y Backsubstitution to sclve for the xvel 4

xvel(:,n)=DD(:,2*n-1:2+n)\Omega(:,n);
for i=n-1:-1:2
xvel(:,i)=DD(:,2*i-1:2*i)\(ZLU*xvel(:,i+1)+0mega(:,i));

end;

Yy, Making of state vectors %4/

for i=0:n
x(:,i+1)=[[R(1,1i+1)]
[xvel(l,i+1)]
[(R(2,i+1)]

[xvel(2,i+1)]];

32
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function error=alg2(R);
% R = Matrix of interpolatiompoints, x0 ... xm.

A first row = x-coordinates, second row = y-coordinates.
Y, BC = acceleration in x and y direction are both = 0.

global a b A B Cn h alphal alpha2 betal beta2 lambdal lambdaZ

o
global errorcalc ctrlsignal

ot

% The System %4

A={{ 0 t 0 0]

{ 0 lambdal alphal alpha2]

(0 0 01]

[ betal beta2 0 lambda2]l];
B=[[0 0]

(1 0]

{o 0]

(0 111;
c=([1 0 0 0]

(0 0101];
%% Calculation of the integral from 0 to h in m steps Ui
m=40; %, number of points between interpolationpoints
tol=1e-08; % the numeric error tolerance

Mtau(:,1:4)=zeros(4);
tau=0;
for j=l:m
oldtau=tau;
tau=oldtau+h/m;
Mtau(:,4*j+1:4%j+4)= quad8mod(’int’,oldtau,tau,tol)
+ Mtau(:,4*j-3:4xj);
end;
M=Mtau(:,4*m+1:4*m+4);
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%4 Forming of the Matrizes for the Blockdiagonmal system %%

e_Ah=expm(-Axh);
Minv=inv(M);
ZZ=Minv=e_Ah;
wWw=e_Ah’*ZZ+Minv;

WL=[WW(2,2) Ww(2,4); WW(4,2) Ww(4,4)]; % Partitioning matrixes
ZLU=[22(2,2) 22(2,4); ZZ(4,2) 2Z(4,8)];
LL=(22(2,2) 2Z(4,2); 2Z(2,4) ZZ(4,4)1;

WR=[WW(2,1) WW(2,3); WW(4,1) WW(4,3)];
ZRU=[2Z(2,1) 2Z(2,3); 2Z(4,1) Z2(4,3)];
ZRL={2Z(1,2) 22(3,2); 2Z(1,4) 2Z(3,4)];

Ulu=[Minv(2,2) Minv(2,4);Minv(4,2) Minv(4,4)];
Uru=[Minv(2,1) Minv(4,1);Minv(2,3) Minv(4,3)];
V1=({lambdal alpha2; beta2 lambdal];

Vr=(0 alphal; betal 0];

"W, Forming of the right side of the Blockdiagonal system YAA

for i=2:n
Omega(:,i)=ZRL*R(:,i-1)-WR*R(:,i)+ZRU*R(:,i+1);

end;

Omega(:,1)=(Vr-Uru)*R(:,1) + ZRU=R(:,2);

Omega(:,n+1)=ZRL*R(:,n) - (WR-Uru+Vr)*=R(:,n+1);

%Y., Gausselimination to produce upper triangular system YA

DD(:,1:2)=Ulu-V1,;

for i=2:n+l
2zd=ZLL*inv(DD(:,2*1-3:2*1-2));
DD(:,2*i-1:2%i)=WL-zd=*ZLU;
Omega(:,i)=Omega(:,i)+zd*Omega(:,i-1);

end

DD(:,2*n+1:2*n+2)= (WL-Ulu+Vl) - zd*ZLU;
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%% Backsubstitution to solve for the xvel Ui

xvel(:,n+1)=DD(:,2*n+1:2*n+2)\Cmega(:,n+1);

for i=n:-1:1
xvel(:,1i)=DD(:,2%i-1:2*1)\(ZLU*xvel(:,i+1)+Cmega(:,1));

end;

%% Making of state vectors %k

for 1=0:n
x(:,i+1)={[R(1,i+1)]
[xvel(l,i+1)]
[R(2,i+1)]
[xvel(2,i+1)1];

end;

%4 Plotting of trajectory
%% and error estimate calculation

sumnorm=0;
hold on
for j=0:m
eAtau=expm(A*j*h/m) ;
for i=0:n-1
entry=eAtaux(x(:,i+1)+Mtau(:, 4*j+1:4xj+4)*Minv=
(e_Ah*x(:,i+2)-x(:,i+1)));
plot(entry(1),entry(3),’.”)
if errorcalc )
sumnorm = sumnorm + dist(entry(i),entry(3),i,h);
end;
end;
end;

%/ Plotting of the control sigmals Wi

if ctrlsignal
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pause, clg
subplot(2,1,1),hold on
subplot(2,1,2),hold on
for i=0:n-1
for j=0:m
csignvec(:,j+1)=B’=expm(-A’*j=h/40)=Minv=
(e_Ah=x(:,i+2)-x(:,1+1));
end;
subplot(2,1,1),plot(i*h:h/m: (i+1)=h,csignvec(l,:))
subplot(2,1,2),plot(ixh:h/m: (i~1)=h,csigavec(2,:))
end;

end;

error=sumnorm/n/m;
end;

function [Q,cnt] = quad8mod(F,a,b,tol)
YAlteration of the original matlab toolbox program. QUADS

A
h

A

Numerical evaluation of an integral, higher crder method.

Q@ = QUAD8(’F’,A,B,TOL) approximates the integral of F(X)

from A to B to within a relative error of TOL.

'F’ is a string containing the name of the function.

The function must return a 4*4-matrix output value if

given an input value.

Q = Inf is returned if an excessive recursion level is

reached, indicating a possibly singular integral.

QUAD8 uses an adaptive recursive Newton Cotes 8 panel rule.

Cleve Moler, 5-08-88.

Copyright (c) 1984-94 by The MathWorks, Inc.

[Q,cnt] = quad8(F,a,b,tol) also returns a function
evaluation count.

Top level initialization, Newton-Cotes weights

w=[3956 23552 -3712 41984 -18160 41984 -3712 23552 3956]/14175;

x:

a + (0:8)*(b-a)/8;
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% set up function call

for i=x
v = [y feval(F,1)];
end;

Y, Adaptive, recursive Newton-Cotes 8 panel quadrature
Q0 = zeros(4);

[Q,caz] = quad8stpmed(F,a,b,tol,0,4,x,7,Q0);

¢cat = cat + 9;

end;

function [Q,cnt] = quadSStpmod(F,a,b,tol,lev,w,xO,fO,QO)
“Alteration of the original matlab toolbox program.QUAD8ST?

Y, Recursive function used by QUADS8.

Y, (G,cat] = quad8stp(F,a,b,tol,lev,w,f,Q0) tries to approximate
% the integral of #(x) from a to b to within a relative error
% of zol.

%, T is a string containing the name of f. The remaining

%, arguments are generated by quad@mod or by the recursion.

% lev is the recursion level.

Y, w is the weights in the 8 panel Newton Cotes formula.

% x0 is a vector of 9 equally spaced abscissa is the interval.
Y, £0 is a matrix of the 9 function values at x.

% QO is an approximate value of the integral.

% Cleve Moler, 5-08-88.

%, Copyright (c) 1984-94 by The MathWorks, Inc.

LEVMAY = 10;

% Evaluate function at midpoints

%, of left and right half intervals.
x = zeros(1,17);

x(1:2:17) x0;

x(2:2:16) = (x0(1:8) + x0(2:9))/2;

£(:,1:4)= £0(:,1:4);
for i=1:8
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f(:,8%«i-3:8%i) = feval(F,x(2*1i));
£(:,8*%i+1:8%i+4) = £fO(:,4*i+1:4xi+4);
end;

% Integrate over half intervals.

h = (b-a)/16;
Q1=0;Q2=0;
for i=1:9

Q1 = Q1 + h*w(i)=f(:,4*1-3:4x%1i);

Q2 = Q2 + h*w(10-3i)*f(:,69-1%4:72-i%4);
end;
Q = Q1 + Q2

%, Recursively refine approximations.
if norm(Q - QO0) > tol*norm(Q) & lev <= LEVMAX
¢ = (a+b)/2;
[Qi,catl] =
quad8stpmod(?,a,c,tol/2,lev+1,w,x(1:9),f(:,1:36),Q1);
(Q2,cnt2] =
quadSStpmod(F,c,b,tol/2,lev+1,w,x(9:17),f(:,33:68),Q2);
Q= Q1 +Q2;
cnt = cnt + cntl + cnt2;
end
end;

function res = integrand(v)
global A B C

e_AvB=expm(-A*v)=*B;
res = e_AvBxe_AvB’;
end;

function [d)=dist(xx,yy,i,h);
% Initiating search algorithm.

39
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8.2 Maple Program

with(linalg);
wita(student);

alphal:=1;
alpha2:=1;
betal:=0;
betal2:=0;
lambdal:=100;
lambda2:=100;

:=15;

;=vector(n+l);.
XX:=t->a*xt*Pi-b*xsin(t*Pi);
YY:=t->a-bxcos(t*Pi);
for i from 0 to n
do

R[i+1]:=matrix([[XX(-1+i*h)],
[YY(-1+i*h)11);

wH B oM
il
O
N

od;

A:=matrix([[ 0, 1, 0, O],

[ 0, lambdal, alphal, alpha2],

(o, 0, 0, 1],

[ betal, beta2, 0, lambda2]l);
B-=matrix([[0,0],(1,01,[0,01,[0,111);
C:=matrix([[1,0,0,01,(0,0,1,011);

alias(Id = &*())
Aprim:=transpose(A);
Bprim:=transpose(B);
e_At:=t->exponential(-Axt);

41
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e_Aprimt:=t->exponential(—Aprim*t);
eAt:=t->exponential (A*t);
e_Ah:=e_At(h);

integranden:= proc (v)
evalm(e_At(v) &+ B &= Bprim &= e_Aprimt(v));

end;

int (funk,v);
end;

map(integrera,integranden(v));
integralen:=map(simplify,");

evaluera:=proc (funk)
global tau;

sups (v=tau,funk) ;
end;

Mtau:=vector(m+1);
Mtau[l]:=matrix([[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0]]);
tau:=0;

MO :=evalm(map(evaluera,integralen));

for j from 1 tom
do
tau:=j*h/m;
Mtau[j+1]:=evalm(map(evaluera,integralen)—MO);
od;
M:=Mtau(m+1];

Minv:=evalm(inverse(M));
77 :=evalm(Minvé&*e_Ah);
WW:=evalm(transpose(e_Ah)&*ZZ+Minv);
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WwL:=submatrix(Www, [2,4],(2,4]);
7LU:=submatrix(2Z, (2,41, [2,4]);
ZLL:=transpose(submatrix(22,[2,4],[2,4]));

wR:=submatrix(Ww, [2,4],[1,31);
ZRU:=submatrix(2Z,[2,4]1,[1,3]);
ZAL:=transpose(submatrix(ZZ,[1,3],(2,41));

xvel:=vector(n+l);
xrel[1]:=evalm((R[2]-R(1]1)/h);
<x7el[n+1] :=evalm((R[a+1]-R(n])/h);

Czmega:=vector(n+l);

for 1 from 2 ton

do
Omega[i]:=ZRL&*R[i-1]-WR&*R[i]+ZRU&*R[i+1];

od,;

Omega[2] :=Omega (2] +ZLLa*xvel[1l];

Cmega [n] :=Omega [n] +ZLU&=xvel[n+1];

DD:=vector(n+1);

DD (2] :=WL;
for i from 3 to n
do

-d:=evalm(ZLL&*inverse(DD[i-1]));

DD (1] :=WL-zd&*ZLU;

Omegali] :=Omega[i]+zd&*Omegal(i-1];
od;

xvel[n] :=linsolve(DD(n],Omegaln]);
for i from n-1 by -1 to 2

do
xvel[i]:=linsolve(DD[i],ZLU&*xvel(i+1]+Omegalil);

od;

x:=vector(n+1);
for i from 0 to n
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do
x[i+1] :=matrix([[R[i+1][1,1]],
[xvel(i+1](1,11],
(R{i+1](2,1]],
[xvelli+1](2,1]11);
od;

plotlist:=(];

for j from 1 tom

do
tau:=j*h/m;
eAtau:=evalm(eAt(tauw));

for i from 0 to n-1

do
entry:=evalm(eAtauk*(x [i+1]+Mtau[j+1]&*Minv
gx(e_Ahg*x[i+2]-x[i+1]1)));

plotlist:={[entry[1,1],entry(3,1]1],0p(plotlist)};
od;
od;

plot(plotlist,style=point);
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Abstract

When trying to fly an aircraft as smoothly as possible it is a good idea to
use the derivatives of the pilot command instead of using the actual control.
This idea was implemented with splines and control theory, in a system that
tries to model an aircraft. Computer calculations in Matlab shows that it is
impossible to receive enough smooth control signals by this way. This is due
to the fact that the splines not only try to approximate the test function,
but also its derivatives. A perfect traction is received but we have to pay in
very peaky control signals and accelerations.
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2 Introduction

In the beginning our intention was to calculate control laws for an aircraft
model so it would fly as smooth as possible in three dimensions. The comfort
for the passengers was the most important consideration when we forced our
system, the representation of the plane, to follow a certain trajectory.

All the programming has been realized in a numeric computation and
visualization software called Matlab. Also Maple has been used in some
of the heaviest calculations and my third contact with the more advanced
computer world was Latex that this report is written in. The second half of
this paper consists of Matlab code ended with listed references.

The test began in one dimension with three different kinds of systems.
By way of introduction the essential conceptions of reachability and stability
were examined and written down in chapter 3 and 4 respectively. With these
tools we could investigate the main features of the systems and obtained the
result that all of them were completely reachable, stable but not guaranteed
input-output stable (see chapter 5, The Systems).

A spline is the curve of an n-degree polynomial that is joined in its end-
points with similar polynomials. They are connected in the way that they
have the first n-1 derivatives, at the jointly point, in common. Chapter 6
consists of calculations for the spline approximation and the control theory.

Chapter 8, Results, discusses some of the results we received and also
displays examples of graphs that were obtained. The test could not be con-
cluded in the way we thought due to a surprising combination between con-
trol theory and splines. The last two pages in chapter 8 deals with this main
result.
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3 Reachability

When controlling an aircraft we will be sure that a suitable control signal u
can take us to all desirable states. Transfered to our one dimensional case
we have to determine under what circumstances there is an input signal u
which transfers the state from z(¢;) = z, to z(¢;) = z,. This is a basic issue
in systems theory and it leads to the concept of reachability. We will call a
system completely reachable if it has the property that this can be done in
any positive time for any two points.

Most of the trains of thought in the following proofs are derived from
lecture notes given by Tomas Bjork, Optimization and Systems Theory, Royal
Institute of Technology, Stockholm, Sweden, during the fall of 93.

Consider the system.

z(t) = A(t)z(t) + B(t)u(t); z(tg) = zo.

with the general solution
t
z(t) = D(t, 1)z +/ d(t,s)B(s)u(s)ds.
to

In order to reach the desired state z(t;) = z; the following equality must be
fulfilled.

;= P, t0)zs +/: &(t;,s)B(s)u(s)ds.

Define d £ z; — &(t;,t;)z, and let U be the space of input signals. Defining
the mapping L: U — R" as
Equation 3.1 Lu £ [;1 &(t;,s)B(s)u(s)ds.
It is obvious that the desired state transfer is possible if and only if the
equation Lu=d has a solution, i.e. d € Im L.

It is easily verified that L is a linear mapping, but since it does not
act between two finite-dimensional vector spaces, L does not have a finite-

dimensional matrix representation.
Taylor’s ‘Introduction to Functional Analysis’ helps us prove the following

theorem [Taylor, page 250].

Theorem 3.1 If X,Y are complete inner product spaces and L: X — Y is
a linear continuous operator then

Im L=1Im LL”
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R™ is a Hilbert space but what kind of space is 4?7 Define the inner product
for U as

(u,0), 2 /,,:1 u(t) To(t)dt

and it can be proved that &/ becomes a Hilbert space. The adjoint operator
L* is determined by

(Lu, d)pn = dT/: B(1,5)B(s)u(s)ds =
/:o” {B7(5)87(t1,5)d}" u(s)ds = (u, L"d),
VuelU,d e R"

Consequently we get
L*:R* > U as (Ld)(t)=BT(t)o7(t,t)d
and finally
t
LL*d = [/’ &(t,,5)B(s)BT(s)®7(t,,5)ds| d
to
We thus have a linear mapping
LL:R* - R*
that is given by the symmetric, positive semidefinite n X n matrix.
t
W(ts, t1) = / " @(t;,5)B(5)BT(s) 8T (t;,5)ds
tp

Theorem 3.2 We can take a system from z(ty) = 2 to z(t;) = z; if and

only if
d é r; — ¢(t1,t0)$g € Im W(to,tl)

We also have that the conirol signal u with minimum norm (energy) is given

by
i(t) = BT()®7(t;,t)a

there a is just any solution to

W(to, t,)a =
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Remark 1 The point with the above is that it is much easier to characterize
Im W than Im L, because W is an ordinary matriz.

Proof Let L be asin (3.1)
(if) Suppose first that d € W(¢y,¢), i.e. d € Im LL*, then d = Im LL*a
for some a € R™. Let u £ [*a and we get Lu = LL*a = d. Thus, d € Im L

and the state transfer is possible.
(only if) Suppose now that the state transfer is possible, i.e. d € Im L.
Furthermore, suppose that d & Im W(ts,t,), i.e. d ¢ Im LL*. This will

give a contradiction.

Recall that for any matrix A it holds that Im A = (ker AT)L. Since LL*
is a symmetric matrix, we get d & (ker LL*). This implies that there is a
z € ker LL*,i.e. LL*z = 0, such that (z,d)g» # 0. But, LL*2 = 0 implies
that 0 = (2, LL*2)gn = (L*z,L*z),. Hence, L*z = 0. Now the contradiction
easily follows since

0 74 (Z, d)Rn = (z, Lu)Rn = (L'Z, u),, =0

The final step to prove the optimality of 4. Let u be any solution of Lu=d.
Then Lu = Li so L(u — 4) = 0. This gives

0 =(a,L{v—1))gn = (L a,u— 1), = (d,u — ).

Hence, (4, u) = (i, 4). We now get by using the Cauchy-Schwartz inequality
that
(4, 4) = (d,u) < (d,4)"/2(u, )"/

Dividing by (4, 4)"/? yields that

(i, %)% < (u,u)!/2.

Hence, 4 is optimal. O
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3.1 Reachability for Time-Invariant Systems

For a time-invariant system

1
z = Az + Bu W(tg, t) = / ! eA(“_’)BBTeAT(“"’)dS

to
the question about reachability is radically simplified.
Definition 3.1 Let (A,B) be a matriz pair, where A ts nxn.The reachability
matriz " is defined as

r2(BAB,...,A""B|

Theorem 3.3 For all (to,t1) such that to < t; we have
Im W(to,tl) =Im '

Proof I ImI'CIm W

Im T CIm W& (ker IT) C (ker WT): & ker WL C ker I't

Presume that a € ker W,i.e. Wa=0s0 aT Wa = 0 and hence it follows that
aTeA1=B = 0 Vs €[ty ]

Derivation with regard to s a couple of times and s :=¢; gives
aTB=0...aTAB=0...... aTA* !B =20ie. a€ker I'".

I. In WCImT

In the same way as above we are going to prove that ker I'T C ker W.
Suppose that a7I" = 0. By Cayley-Hamilton follows

aTA*B=0 k=0,1,2,...
Accordingly we have
T _-As NI
a' e ’B= Z s A*B =20
k=0 ™
So it follows that a” W = 0, i.e. Wa=0,i.e. a € ker W. O

Remark 2 Since Im I' = Im W(to,t1) for any interval (to,t1), we see that
in the time-invariant case the image of the reachability Gramian is inde-
pendent of the interval (to,t1). However, this does not imply that the state
transfer can occur during a fortuitous short time interval.
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Definition 3.2 Let n be the dimension of the state space. The pair (A,B)
is said to be completely reachable if ' has full rank, i.e.

rank'=n
Definition 3.3 The reachable subspace R is defined as
R 2 Im [B,AB,A*B,..., A" B]
We easily see that R is the set of states that can be reached from the origin.
Lemma 3.1 The reachable subspace R is A-invariant, i.e.
ARCR
In particular, e*R C R for allt € R™.

Proof Since, by the Cayley-Hamilton theorem, A™ is a linear combination
of A’ for j=0,1,...,n-1 it follows that

AR = [AB,AB,...,A"B| C Im [B,AB,...,A""'B] = R.

Moreover, by induction we get A’R C R, which implies that

e R = Z,—'A"R CR O
P ],
=0
To further clarify the picture we note that if the state of the system is in R,
at some instant, it is impossible to steer the state out of R. Neither is it
possible to enter R from an initial state not in R. Particularly we have that
if zy, z; € R then the state transfer can occur in just any time ¢t. The points
that can be reached in a time ¢ from a given z; establish the plane

R(.’L‘g, t) é 8‘4‘270 + R
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4 Stability

A very essential problem when designing a control system is how to avoid
instability, i.e. that the output increases without limit. The following sec-
tion is an abridgement of chapter four in “An Introduction to Mathematical
Systems Theory” by A. Lindquist and J. Sand [Lindquist/Sand]. All theory
dealing with the alternative approach, the Lyapunov equation, is omitted.

Intuitively an input-output system is stable if a bounded input produces
a bounded output or if the output tends to zero, or at least remains bounded,
when the input is zero.

For nonlinear systems, stability in this sense is typically dependent on the
initial conditions and the specific input applied. Hence, in general, stability
is not the property of a system, but rather the property of a solution.

This chapter deals only with the stability of time-invariant linear systems,
a subject which is drastically simplified by the fact that the complete set of
solutions of the system £ = Az can be displayed explicitly by means of the
Jordan form. As a consequence, it is enough to check the eigenvalues of A
in order to determine whether a bounded input produces a bounded output,
and thus it will be meaningful to talk about stable systems.

4.1 Stability of Continuous-Time Systems

We want a bounded input to give a bounded output, which is sometimes
abbreviated as BIBO-stability.
Definition 4.1 The system

{ &(t) = A(t)z(t) + B(t)u(t)
y(t) = C(t)=(t)

is input-output stable if there is a k such that

ﬁit("t))nzsol t € [to, 00) } vt tetioe)

for every to.
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Example 4.1 Consider the time-invariant case, where (A,B,C) are constant
matrices. Then

y(t) = " CeA(=9) Bu(s)ds.

to

Defining G(t) £ Ce*B,

Iyl < [ 16 = )| u(s)lds  (simee (i)l < 1

< [ 6o ds

<leniBl | ey,

i.e., a sufficient condition for input-output stability is that the integral
15 llett||dt is convergent. O

4.2 Stability matrices

Let us study the homogeneous system:
Equation 4.1 z = Az; z(0) = z,.

Definition 4.2 The system ({.1) is stable if the solution is bounded on the
interval [0, 00) for all initial values zo and asymptotically stable ifz(t) — 0
when t — oo for all z,.

Theorem 4.1 (1) The system (4.1) is asymptotically stable if and only if
the real parts of all the eigenvalues of A are less than zero, i.e. the eigenvalues
are all located in the open left half plane.

(2) The system ({.1) is unstable if A has at least one eigenvalue in the open

right half plane.

Proof In this proof we shall use a fundamental result from linear algebra,
the Jordan decomposition theorem. This theorem guarantees the existence
of a basis for R™ in which the representation of the linear mapping A takes
a particularly simple form.



4 STABILITY 12

Transform the matrix A to Jordan form A = TJT~!, where J is a block-
diagonal matrix.

J = diag(J;,Jg,...,J,)
and each d, x d, block J, has the form

Ay 1 0
Ay 1
Jy = ]
1
0 Ay

eAt =T ‘ T—I’

0 elrt

so it remains to analyze each e’**. But J, has the form

J,=A,1+S,
where S, is a shift matrix
[0 1 07
01
S, = 0
1
| 0 0

of dimension d, X d,, having the property that S* = 0 for i > d,. Conse-
quently,

Jot _ _Awt_Sut _ Ayt 2 dy—1
et = evlev = ¢ (1+t5+—2!5 +...+———(dv_1)!.5' )

and therefore, setting o, = Rel, and w, = ImA,,
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Equation 4.2 e4! = ¥, 7! P,(t)(cosw,t + sinw,t),

where P,(t) is a matrix-valued polynomial of dimension d, — I in . From
this expression it follows that (1) e4'zy — 0 for all zo if and only if
o, 2 Re), < 0 for all v and that (2) edtz, — oo for at least one z; if some

o, > 0. 0O

Lemma 4.1 The system in equation 4.1 is stable if and only if all eigenvalues
of A are located in the closed left half plane and any eigenvalues on the
imaginary azis correspond to one dimensional Jordan blocks.

Proof By theorem 4.1 (1) we only need to worry about terms in (4.2) for
which o, = 0, i.e. €’** = 1. These terms will remain bounded if and only if

the degree of P, is zero, i.e. d, = 1.

Definition 4.3 A is a stability matriz if Re A(A) < 0.

Theorem 4.2 If A is a stability matriz then the time invariant system

z = Az + Bu
y=Cr

is input-output stable.

Proof If all eigenvalues of A have negative real parts so that all o, in (4.2)
are negative then

o0
/ lleAt]|dt < oo
a

and hence, in view of example 4.1 the system is input-output stable. O
The last theorem is very important for us because it deals with the kind of
system we use when modeling an aircraft.
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5 The Systems

The test was accomplished with three systems of different kinds. All systems
use a single input and produce a single output, a so called SISO-system.
As we will see later all systems have the necessary property of complete
reachability, as was discussed in chapter 3.

That a bounded input gives a bounded output is sometimes abbreviated
as BIBO-stability. This highly desirable property for a system was discussed
in chapter 4 and will be further examined for each specific case.

5.1 Transfer Functions

This subject is discussed in Etkin’s book “Dynamics of Atmospheric Flight”
[Etkin, page 50-51]. He writes
System analysis frequently reduces to the calculation of system
outputs for given inputs. A convenient and powerful tool in such
analysis is the transfer function, a function G(s) of the Laplace
transform variable s [Complex valued], that relates input u(%) and
output y(t) as follows,

G(s) = y(s)/u(s)

where (7) denotes the Laplace transform. So long as u(t) and
y(t) are Laplace transformable the transfer function defined above
exists. However, it will in general be a function of the initial
values of y and its derivatives, and moreover, for nonlinear and
time varying systems, of the particular input u(t) as well. Such
a transfer function is of relatively little use. We can however
obtain a unique function G(s) if (I) the system is linear and time
invariant, and (II) it is initially quiescent, i.e. at rest at the origin
in state space with no inputs.

He continues,
When u(t) and y(t) are zero for ¢ < 0, the Laplace and Fourier

transforms are simply related, i.e. @(iw) = U(w). It follows that

G(iw) =)(;—E:—;
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Sometimes it is G(iw) that is called the transfer function.

When examining different transfer functions in a Bode diagram it shows
that there are systems with the same absolute value curve but with different
phase curves. Of all systems with the same absolute value curve there js
one with less negative phase advance, it is called a minimum phase system
[Glad/Ljung, page 109].

I give the following theorem without a proof.

Theorem 5.1 A theorem with a rational transfer function is in minimum
phase if and only if it has neither poles nor zeros in the open right half plane.

The others are called non minimum phase systems. This distinction is very
important because we know from one dimensional control theory that a sys-
tem with zeros in the numerator will start off in the opposite direction. This
bad quality can make the system difficult to control.

A A-value less or equal to zero are assumed in the following calculations.

5.2 System 1

il
N

-2
N—

x:[g i]x-{-[?}u y=[1 0]z z

gives the system dynamics § = Ay + u
The reachability matrix
01
r=[11]

has full rank for all lambda and the system is therefore completely reachable.
System 1’s transfer function

L

1

=Ty

U(s)

without neither poles nor zeros in the open right half plane indicates that it
is a minimum phase system and should therefore be easy to control.
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The Jordan transform of the matrix A is P~!JP where

J=[g ” Pz[x/(xo—l) 1/(11—A) .

Because all eigenvalues of A are located in the closed left half plane and the
eigenvalue on the imaginary axis correspond to an one dimensional Jordan
block we know that the system is stable. Owing to this quality we are guar-
anteed that when a fortuitous in signal ultimately equals zero, the solution
to the system & = Az is bounded on the interval [0, 00). This of course im-
plicates that also the output is bounded. Referring to previous theory the
eigenvalue on the imaginary axis prevents input-output stability.

5.3 System 2

0 1 0 0 0 y
.0 A1 1 0 € _ N
=105 0 0 1 z 4+ 0| y=|120 00]1: z=1

0 0 0 A2 1 u

gives the system dynamics §j = Alg+utew U= A2u + w.
The reachability matrix

0 ¢ €Al exl? 41
r—|¢ Al eAl2+1 eA3 4214 )2
10 1 A2 222
1 A2 22 A28

has full rank for all values on A and € and the system is therefore completely
reachable.
System 2’s transfer function
€s? —eX2s + 1 U(s)
s2(s —A1)(s — A2)
gives for negative A’s that there are no poles in the open right half plane.
The numerator es® — eA2s + 1 = 0 give the solution

A2 22 1
=TT

Y(s) =
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This implies for a negative € that we have a zero in the open right half plane.
As A2 always is below or equal to zero the poles for a positive € are in the
left half plane. So the system should be easy to control for a positive € and
probably more difficult for a negative value on the variable.

Taking the Jordan transform of A gives that J equals

A2 0 00
0 A1 0 0
0 0 01
0 0 00

Carrying through the same discussion as for system 1 we see that system 2
has the same properties, stable but not guaranteed input-output stable.

5.4 System 3

Pk
O oo

0 0
1 €

0 x+0wy=[10000]xz=
0 0

0 1

SO >

0
0
1
0
0

£ 8 .

0
0
=10
0
0 A2

gives the system dynamics Yy=dMy+utew = )2 +w
The reachability matrix

0 € el €x1? eAld +1

€ €Al €Al eAP+1 er 4 Al + A2
=10 ¢ 1 A2 A2?

0 1 A2 A2? A23

1 A2 A92 A23 A24

has always full rank and the system is therefore completely reachable.
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System 3’s transfer function

Y(s) = €s’ —eX2s? 4+ |
T os(s? = (AL +A2)s + A1 - A2)

U(s)

can be examined by Routh’s algorithm. The numerator es? — €A2s% + |
gives the following tableau.

€ 0
—€A2 1
1/A2 0

1 0

As A2 always is below, or equal to, zero we get for a positive ¢ that the left
side coefficients € >0 —e\2 > 1/A2<0 1>0 change sign two times.
This indicates that the system has two zeros in the open right half plane for
a positive €. The same calculations for a negative € gives that the system has
one zero in the open right half plane.

The solution to the denominator

s7(s* — (A1 + A2)s +A1-22)=9¢

gives that for all negative values on Al and A2 we have three zeros on the
imaginary axis and two zeros in the open left half plane. If either A or A2
equals zero we get four zeros on the imaginary axis and one in the open left
half plane. When all eigenvalues equal zero we get of course all zeros on the
imaginary axis.

All this together gives that system 3 never will be a minimum phase
system and will therefore be more difficult to control.

Taking the Jordan transform of A gives that J equals

A2 0 000
0 A1 0 00
0 0 010
0 0 001
0 0 000

and this implies that system 3 is stable. The always present eigenvalues that
equal zero prevent the system to be guaranteed input-output stable.
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6 Derivations

The fundamental idea of the test was to simulate an aircraft that is directed
by the flight control to follow a certain path. The given trajectory can be
seen as a set of points that shall be passed at a certain time. By way of
introduction our intention was to determine how exact a given path in three
dimensions could be tracked with maintained comfort for the passengers.
Priority one was to minimize the acceleration and thereby the stress to the
individuals.

To start with, the test was accomplished in one dimension. This sim-
plify the calculations radically and is a common approach to such experi-
ments. Given the set of points {yo, ¥s,-..,¥s} and the corresponding time
{to,t;,...,ta}, we would like to perceive the control laws {ug, us,..., Un—1}
that take the system through the points in such a pleasant way as possible.

Consider the control u; that takes the system from state vector z; to

w - Tk — Thkt1
o ik trsr

Because t € [t, ti+:] the state of the system will be

Trto-

i
z(t) = Al +/ e4(!=2) By, (s)ds
%
and as the state of the system is zz4, at time ti4; we receive the condition,
Equation 6.1

Tyt
Ty = eAltkr 1 =%) g, +/ eA(t"“"')Bu;,(s)ds.
%

The solution u; to equation (6.1) that minimizes the energy of the control
signal is then given by, see chapter 3.

Equation 6.2

-1
_aT evytr  _ _aT _ -
uk(t)zBTe 4 '(/ e A*BBTe 4 ‘ds) (e Ahsrp [ —e ““"x;,)

[}
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That would be very convenient if the integral in equation (6.2) could be
simplified in any way.

We can see our flight path as the aircraft is flown through a large number
of points by an autopilot. With a specific time interval the plane recejves a
correction signal that makes the vehicle track the path with high accuracy.
The time interval te+; — t; are constant and determined by the frequency
the automatic pilot works with.

Assumption 6.1 et leg1 — te = A,

Assumption (6.1) can be used to simplify the integral in equation (6.2).

t
/kH e BBT 4T g5 {r=s-t)=
%

h
- - AT AT
e~ At / e~ ATBBTe~AT1 gy o~ATY,

— »
—

mairir constani

Definition 6.1

A
Mé/ e=AT BT ~4T7 4
0

The equation (6.2) can be rewritten as

Equation 6.3

wu(t) = BTe‘AT(“"‘)M"(e'MzH, —z)

The control would be specified completely by (6.3) if the whole state vector
at each interpolation point was known. As only the points (Yo, ¥15-.., Yn) are
known we have to apply some kind of conditions on the equation to obtain
a solution.

The control u is the actual contro] that the pilot or the auto-pilot achieve.
A very natural choice js therefore to require that the control u is continuous.

Assumption 6.2

Uk (tgr) = upys (tigg)
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By this we acquire (n-1) conditions and allow us to write

Ut (bers) = wrys (tegq)

—
BTe"AT"M_’(e‘A"xH, —) = BTM"(e"A"zHg ~ Tiyy)-
This equation can be simplified by
Definition 6.2

ZEM e
w & e—AThM—le—Ah + M-!

and finally we obtain the modified expression
BT(ZT:I:;,—W::H, +Zti42) =0 k=0,1,...,n— 2.

Written in block diagonal form it becomes,

Equation 6.4

) [ To i
(2T -W Z ... 0 0 o0 1
0 zZT —-w ... 0 0 0 2
L P =0
0 0 0 ... -W Z 0|z,
[0 0 0 ... ZT W Z||z.,
L Zn

As our three systems are very different the calculations will differ from here
and all further computations have to be treated separately.
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6.1 System 1

This is the original system that was first implemented in Matlab. Each state
vector z; consists of two parts, a known coordinate y; and an unknown ve-
locity g:. By partitioning the matrixes in definition 6.2 as

211 212 211 2 w1 Wiz
Z= ,  ZT= , W=
221 222 212 222 War W22

and using the notations given in the following definition, the unknowns can
be kept on the left hand side and the given position coordinates can be moved
to the right hand side.

Definition 6.3

e 22
Z§ =BT | | = [2a]
222
B _ npT " Wi | _
Wr = B - Woy = [WZI]
ng — BT ( Z11 — [221]
Zn
[ 2
B _ nT 1 | _
Z, =8B 2 | T [212]
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We get the system

_ NN
zB -wp zE ... 0 0 0 9
0o zZ¢ -WB ... 0 0 0 ¥2
0 0 0o ... -WP ZZ 0 Yn—2
| 0 0 o ... zF -WB Z§ | Yn-1
L Yn
) [ ¥ 1
-zZB wB -zZB ... 0O 0 0 7
0o -ZB wB ... o0 0 0 Y2
0 0 0o ... WP -ZB 0 Yn—2
0 0 0 ... —zB WB -ZE || yn
L Yn

The right hand side consists of known parameters and is therefore a constant
vector. Our system has (n+1) unknowns but only (n-1) equations so we need
two more constraints.

After reading Per Enquist’s paper “Control Theory and Splines, applied
to Signature Storage” [Enquist] I decided to use the natural boundary con-
ditions, §jo = 0 and §, = 0. This can be seen as a very real behavior for a
vehicle and has also given the best results in former experiments. Enquist
writes “This will let the initial direction and constant velocity of the system
be decided so that the control energy is minimized” [Enquist, page 16-17).
The system dynamics equation § = Ay + u gives

Ao + ug = 0 where up = BTM™! (e"’“’z, - Ia) = BTZz, — BTM™z,.

Definition 6.4
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We get
(/\ - sz) Yo + sz!)x = U,fya - Z,‘f.y:

The system dynamics equation together with earlier definitions give

Aln + Un-y () = 0 where Un—ys(tn) = BTe-AThpr-1 (e"’“‘z,, - a:,,_,) =

BTe'AT"Z:):,l - BTe'AT"M_Ia:,._I =BTWz, - BTM !z, - BTZTz,_,
We get
—Zl?yﬂ-l + (/\ + WIB - Ulf) Yo = 3%—1 + (UrB; - WrB) Yn

Add these two equations to our considered system and the number of un-
known parameters equals the amount of equations. Thus is the problem
solvable and the Matlab program that uses Gaussian elimination is displayed
in mpri21derQ.m.

6.2 System 2

By this system a new approach was introduced for the convenience of the
passengers. Instead of direct using the performed control signalu we use its
derivatives to control the aircraft. The formula @ = 2% 4+ w gives the con-
nection between the control u induced by the pilot and the artificial control
w that actually flies the plane.

Each state vector z; consists of the known coordinate yx and the unknown
parameters, velocity y:, control signal u; and its first derivative ur. As we
have (n+1) state vectors and each state vector consists of three unknowns
it becomes a total of 3(n+1) unknown variables. The constraint that we
require the control signal u to be continuous gives only (n-1) conditions. If
the restrictions are introduced that also 4 and i have to be continuous, we
get further 2(n-1) conditions.

Assumption 6.3
Uk (B4 1) = Upps (brgs)

Ut (bet1) = Gy s (tees)
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Applying this to equation (6.3) becomes for the first condition
BTAT(ZTxk—ka+,+Zx,,+2)=0 k=0,1,...,n—2
and for the second condition
BTATAT (272 — Warys + Zai4e) =0 k=0,1,...,n—2.

By partitioning the matrices in definition 6.2 as

Z11 212 213 214 Z11 221 %31 %41
7 = Z21 222 223 224 7T — 212 222 232 %42
231 232 233 234 213 223 233 243
241 242 243 244 214 224 234 244

wy Wz Wiz Wi
Wy Wop W3z W24
W31 W3z W33z Wsd
W41 Wq2 Wa3 Wa4

W =

and using the notations given in the following definition, the unknowns can be
kept on the left hand side and the given position coordinates can be moved
to the right hand side. The matrix notation . symbolizes a whole row or

column.

Definition 6.5
Continuous control signal, u:

W,B = BT['w.g W.g w_‘] = [611122 + Wy2 €EWas + Wys €EWsgy + W44]

Z,f = BT[z_z zs z4) = lezas + 2742 €225 + 745 €2y + 2]
Z{? = BT[Zz. zg. z;) = [€zos + 204 €232t 23y €42+ z44)
WP = BT[w,] = [ews + wi]

Z8 = BT(2,] = [ezer + 2u1]

Z8 = BT[z] = [ez12 + 2u4]
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Continuous first derivative of control signal, u:
l’i/IB = BTAT[’w_g Wy ‘U)J] = [Eww + 6/\111122 + wee + /\211)42

€Wrs + eAIwss + wes + A2w;s €wyy + eXwsy + wsy + A2w;y]

Zlf = BTAT[Z.Z z3 2.4] = [6212 + CAlzzz + 230 + A2242
€219 +6/\1223 + Z3s + /\2243 €214 + 6/\1224 + z34 + /\22“]

Z,? = BTAT[zz, 23, 25| = [€zo; + €X1z9s + 205 + A2zyy
€zg; + €A1zgs + 299 + A22'34 €2y + 6/\1242 + 9 + AQZ“]

W,_B = BTAT[wJ] = [ewss + eAlwg; + wgy + A 2wy ]
Z£ = BTAT[Z_I] = [6211 + €A1221 + zg; + /\22’41]
Z,f = BTAT[ZL] = [6211 3 EAIZ]}; + 29 + AQZ“]

Continuous second derivative of control signal, u:
VVIB = BTATAT[w_g w.e ’U).“] =
[eA 1w, + (ed1® + Dwss + A 2wss + /\szu

6/\11013 + (CAlz + 1)11.’23 + z\.?w,_, + A?zw“
CAI‘w“ + (6/\12 + I)w“ + /\211)34 + /\22‘11144]

ZB =BTATA [z, 2z, 2] =
[eA1zs + (e/\Iz + 1)zss + A2245 + /\22242
€Xlzis + (eN® + 1)zps + A22gs + A28z,
€A lzyy + (eA1® + 1)zpy + A225; + 222241

26
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Zp = BTATA [z, 2z, ] =
[eAlzs + (eX1? + 1)zes + X225 + A2% 25,
eXlzg + (eX1® + 1)zge + A22gs + /\22;:34
eMzyy + (eN1? 4+ 1)zpp + A2245 + A2%2,,)

W'.B = BTATAT[‘U)J] = [6/\110“ + (E/\Iz + 1)w21 + AQWSI + /\2211}41]
Z,f‘ = BTATAT[ZJJ = [6/\12'” + (6/\12 + 1)221 + /\2231 + AQZZ‘I]
28 = BTATAT[2,) = [eMzyy + (M2 + [)z10 + A225 + A222;,]

We get the following systems, written in block diagonal form.

Each state vector is divided into two parts, a known portion z} which
contains the given position y; and an unknown portion z} that contains the
parameters y;, u; and ;. All right sides consist of known variables and are
therefore constant vectors.

Continuous control signal u:

N
[ ZF -wP zZB ... 0 0 0 z?
0 zZF -—-wpf ... o 0 0 34
0 0 0 -WB ZE 0 z¥_,
| 0 0 0 zy WP zZ8 Tn-1
L z5
B xg .
[ -z2 wB _ZzB 0 0 0 zb
0 -z8 w3B 0 0 0 b
0 0 0 WB -zB ¢ L _,
| 0 0 0 ~-Z8 wp _-zB 1125
zr |
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P -WP Zf
0o ZzB -WP
0 0 0
L 0 o 0

28 WP 7B
0 -ZB W5
o 0 0

Lo 0o o

(2B WP Zf
0o Zp -wp

0 0 0

o0 o0 0
- _78 WP _ZE
0 -ZB wk
0o 0 0
0 0 0

Continuous first derivative of control signal, u:

0o 0
o 0
-WE L,
zg  -WP
o 0
0 0
We -28
-z8 WP

Continuous second derivative of control signal, u:

0 0
0 0
—: IB Zﬁ
S
0 0
0 0
WE -3
-z8 WwWE

8 v
. zg |
v
0 .
v
0 x5
v
p Tn-2
B v
Zlu i Tp-1
v
L xn
- p -
To
0 ] =}
p
0 T
0 mﬁ—z
; P
—ZB | | Tar
p
L zn
F oz ]
01| =
v
0 z5
v
0 Tho2
-5 n
Zlu ; Tn-1
v
L T,
- p -
T o
P
0 z;
P
0 zh
p
0 Th—2
5 p
—Zﬁ i Tn—-1
P
L mn -

28
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Having totally 3(n+1) unknowns but only 3(n-1) constraints we chose to
enter differential approximations for the first and last state vector, this will
decrease the number of unknown parameters by six and thus make the prob-
lem solvable. Remember that the time interval #;,;, — t; is constant and
represented below as h.

The needed velocities are approximated as:

. Y=Y
Yo = ~h
- Yn = Yn-1
O
The needed control signals are approximated as:
. _ Y2 U
yr = T
. __ Yn—1 — Yn-2
Yn-1 = h
7
h
U = gn—l - gn
" h
The needed first derivative of the control signals are approximated as:
.o _ Y= U
Y2 = —n
. __ Yn-2 — Un-s
Yn-2 = h
= Yr — Ye
h
Upoy = !}n—z - yn—l
h
. U — Uy
Ug = A
O Up—~y — Uy
=

The Matlab program that solves the task for system 2 using Gaussian elim-
ination is displayed in mprl4lknovel.m.
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6.3 System 3

This system uses the same approach for the convenience of the passengers
as system 2 does. The only difference is that we now also use the third
derivative of the control signal u to actually fly the plane. The formula
i= A2 + w gives the connection between the control « induced by the pilot
and the artificial control w that actually flies the plane.

Each state vector z; consists of the known coordinate y; and the unknown
parameters, velocity yi, control signal uy, its first derivative u; and its second
derivative ;. As we have (n+1) state vectors and each state vector consists
of four unknowns it becomes a total of 4(n+1) unknown variables. The con-
straint that we require the control signal u to be continuous gives only (n-1)
conditions. If the restrictions are introduced that also #, @ and u have to be
continuous, we get further 3(n-1) conditions.

Assumption 6.4
ﬁk(tk+1) = '11:+1(tk+1)

i (ters) = tiess (tees)
Up (tker) =Urts (Bear)

Applying this to equation (6.3) becomes for the first condition

BTAT (270 — Wiy, + Zoppe) =0 k=0,1,...,n—2,
for the second condition

BTATAT (272 — Wargy + Zmige) =0 k=0,1,...,n—2
and for the third condition

BTATATAT (270 — Wany, + Zrps) =0 k=0,1,...,n-2.

By partitioning the matrices in definition 6.2 as

211 212 213 214 215 Z11 221 Z31 241 251
221 222 223 224 225 212 222 232 242 252
Z=\|2zn 232 233 234 235 z7 = 213 %23 233 243 253
241 242 243 244 245 Z14 224 234 244 254

251 252 253 254 <5% Z15 225 235 245 <55
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wi1 Wiz Wiz W4 Wis
Wy1 W2z W23z W24 W2s
W= | wn ws wi wi Wss
Wy W4z We3 W4 W4s
Ws1 Wiz Ws3 Wsq4 Wss

and using the notations given in the following definition, the unknowns can be
kept on the left hand side and the given position coordinates can be moved to
the right hand side. The matrix notation . symbolizes a whole row or column.

Definition 6.6
Continuous control signal, u:

WIE = BT[w.z ws Wy w,5] =
[ewss + wse €was + wss €wyy + W5y EWes + wss)
sz = BT[Z.e zg 24 25| = €222 + 250 €Zog + 255 €29y + Z5y €Zps + zs55)
ZP = BT[zs. 25, 2. z5] =[€zas + 2zo5 €292+ 295 €p+ 25 €252 + Z55]
W28 = BT[w,] = [ews; + ws/]
Zrﬁ = BT[z,] = [ezas + 25:]

Z8 = BTz, ] = [ez12 + 215]

Continuous first derivative of control signal, u:
W,B =BTAT[w, ws wy ws]=[ewrs + eXlwes + wye + A2wss

cws + 6/\11023 + Wys + /\21053 €Wy + 6/\1'(1724 + Wyy + )\2w54]

Zlf = BTAT[Z.e Zs Zy4 Z,5] = [ez,g + eX1ze0 + Zy2 + )\2252
€219 + 6/\1223 + 248 + A2253 €214 + 6/\1224 + 244 + /\2254]

Z',? = BTAT[Zz. zs. zy. 25) = [€221 + €Xlzos + 2oy + A2zs5
€zg; + €Nlzss + 234 + AD2s5 €241 + €XNzye + 24y + A2245]
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W2 = BTAT[w,] = [ew;; + eMwyy + wy; + A2ws; )

Zz = BTAT[Z_I] = [6211 + C/\1221 + Z41 + A‘?Zﬂ]
Z,f = TAT[ZL] = [6211 + 6A1212 + 2z + A22'15]

Continuous second derivative of control signal, i:
W,B = BTATAT[w,g wy wy ws|=
[eX1w;s + A 1% wos + wys + A2wys + A2% wsy
eXlwyg + eA1%wee + wsy + A2wyg + A2% w5y
eXwyy + eX1Pwyy + wy; + A2wyy + A2% wsy]

Z,f = BTATAT[z,g zg zy zs]=
[€X121s + €A1 205 + 255 + A22yp + A2% 255
eN1z;s + eN1%2pg + 299 + A2z;5 + A2% 254
€Xlzy + eX1%2p) + zg) + N2z + A2%25]

Z,f = BTATAT[zz- zs. %, z5) =
(€A 122 + €X1% 200 + 205 + A2zs; + A2% 255
€Mlzg; + eN12290 + 259 + A2z¢; + A2% 245
€Mz + eA1%20 + 249 + A225 + 22% 245]

ve

WP =BTATAT[w,] = [eMwyy + €A 12wy, + wsy + A2wyy + A2%ws,]
Z5 = BTATAT[z,] = [eMzi + €A1 220) + 251 + A2y + A2%25.]
28 = BTATAT[2,]) = [eMzyy + M2 210 + 205 + 2214 + A2%245]
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Continuous third derivative of control signal, u:
WlB= BTATATAT[U)_Q Wse Wy 'w..;] =
[E/\IZ’U)IQ + (6/\13 + I)wgz -+ /\21.032 + )\22w42 + /\23%32
ex1®ws + (e)\l‘y + D wes + A2wss + /\Q’wu + 227 w5y
6/\12101‘ + (6/\18 + 1)’(1)24 + /\21034 + /\2210“ + )\2"w5‘]

Zz= BTATATAT[25 zs z4 z5)=
[e)\lzzlg + (6/\13 + 1)z2e + A2252 + 2%z + A2% 250
A2 zys + (eX® + 1)za5 + A22gs + A2 255 + A2 259
X122, + (eM® + 1)zgy + A2295 + A2%2 4+ 227 254]

2"5= BTATATAT[Zg_ zs. z. z5) =
[M122e + (eM1® + 1)z2s + M2zas + A2 20 + X27 205
eXI%zg + (eM® + 1)zs0 + N2zss + A2% 29y + A27 255
A1z + (X1’ + 1)zys + A22s + A2% 2, 4+ A2° 245)

W= BTATATAT(w,) =
[6/\12’w“ + (CAIS + 1)1021 + /\Qw.ﬂ + /\sz“ + /\2311)51]

72 = BTATATAT[z,] =
[ex1%z, + (c)\l‘? + 1)zgy + A22z5; + A%z + 229 254

5P BTATATAT[z] =
[eA1%2; + (e/\I" + 1)z12 + A2z + 2%z, + A2°%245]
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We get the following systems, written in block diagonal form.

Each state vector is divided into two parts, a known portion z} which
contains the given position y; and an unknown portion z; that contains the
parameters ¥, u;, u; and %;. All right sides consist of known variables and
are therefore constant vectors.

Continuous control signal u:

[
(zP -WwEB zB ... 0 0 0 T¥
0 2z -wf ... 0 0 0 zy
0 0 0 ... -WP ZB o0 T,
| 0 0 0o ... zf -wB ZB || =,
Lz,
-ZB wB -ZzB 0 0 0 %
0 -ZB wk 0 0 0 3
0 0 0 wB -ZB 0 zf_,
0 0 0 -zB8 wB -zB || 2,
i 5
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[ Zf -WP  Zf
o zE -Wwp

[ -z8 WP -Z5
0 -ZB W5
0o 0 0

L 0o o0 o0

[ ZF -wpP  Zf
o zZF -WP

7B WEB _ZB
0 -ZB W5
0 0 0
0 o0 0

0
0

17B
_m

B
ZII

WB

r

7B
_Zrl

Continuous first derivative of control signal, :

0
0
zB

_WB
l

0
0

4o
WB

Continuous second derivative of control signal, 4:

- v -

7B

TY J
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Continuous third derivative of control signal, u:

- ...B ..B ...B 1 20 ]
Iy =Wi Zi_ - O 0 0 2
. B
0 Z” - Wl P 0 O 0 .'E;
o 0 0 -WP Zo 0 || T
...B ..B ..B v
| 0 0 0 Zun =W, Zn x;;l
8 “ee one 9 [ mp i
—z WP -5 0 0 0 i
...B B b4
0 -Z, W, 0 2
0 o ... w2 -7 0 =2
o 00 L =Z W -Za )Ty

Having totally 4(n+1) unknowns but only 4(n-1) constraints we chose to
enter differential approximations for the first and last state vector, this will
decrease the number of unknown parameters by eight and thus make the
problem solvable. Remember that the time interval f;4, — # is constant and
represented below as h.

The needed velocities are approximated as:

. Y=Y
Yo —h
?) — yn - yn—-l

" h

The needed control signals are approximated as:

. Y2— U
Yy, = -
y- — Yn~1 — Yn-2
n—1 h
_ Yo— i

Ug h
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U = yn—l - gn
" h
The needed first derivative of the control signals is approximated as:
g = Yz - i
B _ Yn—2 — Yn-s
Yn—2 = h
u = Yi — Ys
h
Un_; = ?)n-—z — Yn-1
h
Lo U — Uy
Ug = h
. Upn—y — Uy
iy, ;

The needed second derivative of the control signals is approximated as:

. Ys — Yz
Ys = _E—_
. _Yn-s — UYn-y
Yn—s = -—h—
Yz — ys
Up = h
yn—.ﬁ' - gn—B
o2 =T
. Uy — Ug
Uy = h
. Up—p — Upy_g
o= T
. dO - dl
Ug = T—
v dn—l - dn
Up = —

The Matlab program that solves the task for system 3 using Gaussian elim-
ination is displayed in mprl51knovel.m.
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7 The Test

The test was effected by forcing the current system to run through points
situated on the curve we wanted to track. This denotes that the trajectory
has total freedom between the fixed coordinates as long as it passes through
the test curve dots. How close the system followed the test curve was mea-
sured at five additional points between each two fixed coordinates. All these
extra measuring points, along the curve, were added by their absolute value.
The sum of all these measurements is called total-error.

Point-error shows how precisely the system tracks the fixed coordinates.
During all the trials, this value always been zero, i.e. perfect tracking. The
only fixed coordinate that the system does not run through is the end point.
It is due to the lack of constraints there and its divergence is measured by
End-point-error.

7.1 Test curves

Three different kinds of test curves with diverse characteristics were used.
The two standard curves are one period of the sharply curving sine function
and the soft curving function, the hyperbolic tangent. A discontinuous step
function was also used in the test, (see below).

One dim. ¥8: mpri2iderd.m lambda = -1 n=10
12- 4444444 e FENRERRERRT SERLERERE SRR S ALEIREEE LA R R R e R RELEEEE R Y

02k -

H H ‘ i i i i H H 5
“o 02 04 08 08 1 12 14 18 18 2
Total efror : 3.565 Point error :0 Gragh :3 Time t

Figure 1: The step function tracked by system 1 with A=0.
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One dim. raj: mpri21der0.m lambda = -1 na 26

008 ; ; ; ; i ;
0 1 2 3 4 5 6
Total error : 0.004819 Pointerror:0 Graph:3 Timet

Figure 2: The sine function tracked by system 1 with A=0.

One dim. traj: mpr121der0.m lambda = -1 n = 20

0 0.5 1 1.5 2 25 3 35 4
Total error : 0.00375 Pointerror:0 Graph:3 Timet

Figure 3: The tangent hyperbolic function tracked by system 1 with A=0.
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8 Results

In this chapter we are going to look at the output from our systems. The
following figures are exactly like those shown on the computer screen.

At the top left of the graph the program used is exhibited. At the top right
are the values of A1, 11, A2, 12, and ¢, ep, shown together with the number
of points, n, used to determine the test function.The scale of the y-axis are
indeterminable but can give a hint about the ratio between variables of the
same kind. Which quantity the plot gives information about is displayed to
the left of the axis. At the bottom is always the time axis, scaled in seconds,
displayed jointly with the calculated errors, see chapter 7.

At first the difference between system 1 and the other two systems will
be shown. The two systems can be represented by system 3 since they have
about the same behavior for this choice of parameters. Notice the sharper
look of system 1’s control signal u and acceleration, the latter has less maxi-
mal deviation in both graphs. System 1 can not be affected in the same way

One dim. traj: mpri21der0.m lambda= -1 n=26
[+ PoEERRETTT PP R T RO RELRRETTERES T R RSP TR RRT LRI B Y

1 2 3 4
Total error : 0.004919 Poimtemor:0 Graph:1 Timet

Figure 4: Sine tracked by system 1.

as the other two systems. Due to this it is not so very interesting and will
therefore from now on be omitted.
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One dim. traj: mpriStknovelm e -1 Re-10p=0Ona28
0.4. .............. oL R AR R R LR LR R AR LR

-
1 2 3 4 5 ]
Total error : 0.003882 Pointerror:0 Graph:1 Timet

Figure 5: Sine tracked by system 3.

System 2’s behavior when tracking the soft curving function tangent hy-
perbolic is shown below. The first graph shows the smooth behavior for the
system when € = 0. The other two indicate a more uncontrolled fluctuation
for an € # 0. The second and the third test are done with different ¢ so the
received maximum deviation for the acceleration felt by the passengers are
of the same magnitude. The acceleration is at the bottom except when it is
oscillating heavily as in the last two plots.

Opposite the analysis made in chapter 5 it seems as though system 2 is
not as easy to handle even for an € > 0 and its oscillations for ¢ < 0 are
apparent.

In two plots some parts of the curves are omitted. This is to prevent the
large deviation of the acceleration at the endpoints to suppress other impor-
tant information. However, this makes a correct error estimation impossible
and the displayed values on the total error for these plots are wrong. The
true value on the total error is 0.0997 for figure 7 and 0.1967 for figure 9.
The last mentioned plot shows the influence of a changed value on A2. It
increases the magnitude and shifts the oscillating acceleration to an earlier
time interval. For both systems it is true that A/ affects the behavior much
more than what A2 does.
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One dim. tra] mpr141lmovdm 1=-0112= —0209-0n-20

0 0.5 1 15 2 3 3.5
Total error : 0.004263 Point eror © 0 Gmph 1 Timet

Figure 6: Tangent hyperbolic tracked by system 2.

One dim. traj: mpri4iknovelm It = -0.1 12 =-0.20p =« -0.01 n= 20

: : : :
0.5 1 1.5 2 25 3 35 4
Total eor : 49.99 Point error : 1.779 Graph:1 Timet

Figure 7: Tangent hyperbolic tracked by system 2.
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One dim. Ira; mpn41lmovolm 1=-0.1122-020p=0.0086n=20

0.5 1 1.5 2 2.5 3.5 4
Total error : 0.03649 Pointerror :0 Graph:1 11mol

Figure 8: Tangent hyperbolic tracked by system 2.

One dim. trn] mpﬂﬂlvmd.m l1 =01 12=-26p=0.006Nn=20

1 1
0 05 1 1.5 2 25 3 3.5 4
Total error : 53.59 Point error : 0.9051 Graph:1 Timet

Figure 9: Tangent hyperbolic tracked by system 2.
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System 3’s conduct for A/ = A2 = -1 and varying values on €, when tracking
the tangent hyperbolic function, is shown below.

According to the theoretical discussion in chapter 5, we stated that system
3 has two zeros in the open right half plane for an ¢ > 0 but only one for an
€ < 0. We see that the system can handle negative € better than positive,
(see figure 11 and 12).

The curve that shows the acceleration is mostly beneath the control signal
u in all graphs. It is also the most oscillating signal in the two last plots.

The tests using the tangent hyperbolic function are carried out with dif-
ferent sets of A for each systems. It is therefore not so easy to compare
the behavior for the actual systems. However, during experiments that are
not presented in the report, it has been shown that system 3 is more easily
disturbed for an € # 0 than system 2 is.
Correct total error for figure 11 is 0.2435 and 0.3126 for figure 12.

One dim. traj: mpr1Stknovel.m H=-1 12=-1ep=0n=20
18F - e S L R T TR P YRR LT R PR PR PTIED FLITIELITE LR R R RRTE TN FERRTTRTTRTRNY

H L i 1 H

-1 ; i H
05 1 15 2 25

3 35 4
Total error : 0.02377 Pointerror:0 Graph:1 Timet

Figure 10: Tangent hyperbolic tracked by system 3.
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One dim. truj mpn51knovd.m l1--1 2a-1 op--ooosn.zo

2 H i i H H i H i
0 0.5 1 15 2 2.5 3 3.5 4
Total error : 0.09776 Pointerror:0 Graph:1 Timet

Figure 11: Tangent hyperbolic tracked by system 3.

One dim. lmj mpriSiknovelm |1 = -1 12=-18p =0.001 n=20

0 . 1.5 2 25 3 35 4
Totalormr 0.2535 Pointerror:0 Graph:1 Timet

Figure 12: Tangent hyperbolic tracked by system 3.
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System 3’s characteristics are further examined below when it is applied to
the sine curve. Figure 5 shows the obtained control signal u and acceleration
for A\ = A2 =-1 and ¢ = 0. The first graph below displays the control signal
w for the same system and parameters. This is to exhibit the calculated
signals for a smooth case so we have something to compare with when it is
getting rough.

One dim. traj: mpriStknovelm it e -1 Ru-1p=ldn=28

Cs*‘so— : : :

0 1 2 3 4 5 8
Total error ; 0.003882 Point error:0 Graph :B Timet

Figure 13: Sin tracked by system 3.

We receive some other signals in the following figures when system 3 is run by
an € # 0. Observe the twisted trajectory in figure 15 with an accompanying
large value on the total error. Notice also the magnitude on the control signal
w and its third derivative, shown in figures reffi:16 and 17. The system seems
to be more sensitive for an € > 0 than for an ¢ < @, this is probably due to
the circumstance that it has two zeros in the open right half plane in the
first case but only one zero in the second case. The oscillating acceleration
is shifted to a later time interval and has there a larger magnitude for a
negative €.
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Onodm.tui npﬂsﬂmovolm -t 2--1-p-ooozn-2e

2 4 5
Total error :0.2817 Pointerror : 0 Graph:3 Time t

Figure 14: Sine tracked by system 3.

One dm. traj: npn.’nknovelm =1 2--109-0002n-26

2
Total error :0.2617 Pointerror:0 Graph:5 Time t

Figure 15: Sine tracked by system 3.
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One dim. traj: rrpr151knovdm NMee] Ru-10p=0002n=28

N i

» ; ; ;
500 1 2 3 4 L 8
Total error : 0.2617 Pointerror: 0 Graph:8 Timet

Figure 16: Sine tracked by system 3.

OO S TSR L)

1 2 3
Total error : 0.2817 Pointerror :0 Graph: 11 Timet

Figure 17: Sine tracked by system 3.
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ACC 4 ; i H i ;
0 1 2 3 4 S
Total error : 0.05159 Pointerror :0 Graph :3 Timet

Figure 18: Sine tracked by system 3.

One dim, tra): mpriStinovelm Ne-1 Ru-1ep=—0.001n=28

4 5
Total error : 0.05159 Pointerror: 0 Graph :5 Timet

o
-
[~]

Figure 19: Sine tracked by system 3.
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Applying the step function to system 3 gives that the very large control
signals u can be reduced by an € # 0 to the cost of a larger total error.

Omdm.vq nvﬂSﬂnov.Lmn a1 R -o.z.p-On-w

: : ;
[} 0.2 04 0.8 0.8 1 12 1.4 1.8 1.8 2
Total error : 4.091 Point error: 0 Graph:5 Timet

Figure 20: The step function tracked by system 3.

One dim. tmj:rrnﬂ.‘nkmnlm Ha-01 2= -0.20p--0w255n-10

02 0.4 0.e 0.8 1 12 1.4 1.6 18 2
Total error : 5.668 Pointemor: 0 Graph:5 Timet

Figure 21: The step function tracked by system 3.
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One dim. traj: mpr1Siknovelm [1 = —0.1 2= -0.24p = 0.0055 n = 10

mr ........ ......... ......... ......... ,,-,

0.2 0.4 0.8 0.8 1 12 14 18 1.8 2
Total error : 6.373 Pointerror :0 Graph:5 Timet

Figure 22: The step function tracked by system 3.

At last we will take a look at system 2 applied to the sine function with A1
= A2 = -1 and for a very particular choice of e. Figures 23 and 24 show
an oscillating but quite normal behavior for this system. When examining
figure 24 which is run with a slightly changed e it looks about as the other
two until the scale on the y-axis is observed. The first two graphs use an ¢ =
0.004186 respectively e = 0.004188. The value of € for the last three figures
is 0.00418702471143, which gave the largest oscillatory motions. It seems
that we have found a set of parameters that brings system 2 in to resonance.
When changing the value on ¢ we might affect the transfer function so that
the frequency of the actual in signal w is the peak frequency; see figure
27. In such a case we will receive an increased amplification of the output
signal. Notice that this phenomenon only appears when tracking the sine
test function.
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-15 n
o

One dim. traj: mpridiknovelm {1 e -1 2w -1 6p = 0.004186 n = 26
LI 7 T L RT PR PRPLPPOPPROTLY e T IIIT LIS PRI T T TRRTTR VPR EN N

Figure 23: Sine tracked by system 2.

One dim. traj: mpridiknovelm |1 e -1 2 = -1 6p = 0.004188 n = 20
2.5" ................................ (AR RIREEETRAEED SRR R LR CE LR LR RALEE prreareanaaeny

..,
sovarieey

EVJ&&

P PR e e B A

i i 1

i i
6

1 2 3 4
Total etror : 5.862 Pointerror :0 Graph:3 Timet

Figure 24: Sine tracked by system 2.
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t

0 1 2 3 4 ] 8
Total emor : 3.857e+05 Point error ;0 Graph :3 Timet

Figure 25: Sine tracked by system 2.

dim. traj: rvpﬂllknovolm o=t Q--lap 0.004187n = 26

»

=

(=]
3
=3

[ B i H i i ;

1 2 3 4 5
Total error : 7.6248+05 FPointerror :0 Graph:5 Timet

Figure 26: Sine tracked by system 2.
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x 10™ Omdmtrd:rrwuwmd.m He-t E--lm-OOOMWn-ZB
1

2 3 4
Total error : 7.6240+05 Pointerror : 0 Graph :7 Timet

Figure 27: Sine tracked by system 2.

8.1 Surprising Results

Looking at figure 4 or 5 one might be surprised at the appearance of the

control signal u and the acceleration. Even if the sine function is curving it

should not cause such peaks in the graphs. The reason for this is as follows.
Consider the system

=0 o]+ v=liols e=(Y)

From the given system we have that £, = z, and that £, = u. If we use
splines and force the system to track the function f(t) it implies that the
first element in the state vector, z;, equals the function, i.e. y(t) = f(t).
This denotes that z»(t) = f(¢) and that the control signal u(t) = f(¢). The
velocity in figure 28 should by our theory have something in common with
the derivative of the curve f(¢) = sin t. The derivative f() = cos?, so in the
beginning of the first region when f(t) = -1, the graph is shlfted upwards
and scaled, the velocity should be zero. When f(t) becomes zero the velocity
ought to reach its maximum and then decline. For the other half we have the
reversed situation and should therefore have an inverted curve. This behavior
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can be recognized in the first graph and a similar reasoning for the control
signal u equals f(t) = —sin ¢ gives the calculated control signal in figure 4.
Here A # 0 so the graph is shifted to the right. So the splines do not only
try to follow the specified trajectory they also approximates its derivatives.
We can thus effect a perfect trajectory of the test curve but the prize we pay
is huge values on the control signals and accompanying acceleration. The
behavior described makes it impossible to realize a smooth aircraft control
using splines.

This very simplified heuristic description of the phenomenon will be com-
pleted in a paper written at Texas Tech University, Lubbock, USA, by Horn
Professor Clyde Martin, PhD, and Assistant Professor Zhimin Zhang, PhD.

1 2 3 4 5 8
Total error :0.004898 Point error :0 Graph : 4 Timet

Figure 28: Sine tracked by system 1.
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9 Resume in Swedish

Inledningsvis var varan avsikt att ta fram styrlagar for en flygplans modell
s& att den flogs si behagligt for passagerarna som mdjligt. Passagerar kom-
forten var det allra mest vasentliga sa vi utvecklade tva kontroll lagar som
anvande derivatorna av den pilot inducerade styrningen u. Detta ger inte den
energi snilaste insignalen men tar bort de varsta topparna hos styrsignalen
och medfdljande acceleration.

Programvaran som anvants inkluderar Matlab och Maple for berakningar
och Latex som ordbehandlings program. Andra hilften av rapporten bestar
av Matlab program och som avslutas med en referenslista.

Vi ansatte den vanliga endimensionella behandlings proceduren och im-
plementerade systemen i Matlab. Ett huvud program, med tillhérande hjalp
program, for varje kontroll lag.

De givna systemen analyserades ur uppnabarhets och stabilitets synpunkt
vilket resulterade i en bedéomning att de var stabila men inte garanterade
insignal-utsignal stabilitet. Se kapitel 5.

En “spline” ir en kurva till ett n:te gradens polynom vilken ar férenat med
liknande polynoms kurvor i respektive andpunkt. I varje forenings punkt har
funktionerna sina n-1 forsta derivator gemensammma. Detta ger en kurva
som av ogat tycks vara helt homogen men som i sjilva verket bestar av
ett antal sammankopplade delar. Kapitel 6 behandlar “splines” och den
anvandna kontroll teorin.

Huvud resultatet var att vi inte kunde ta fram mjuka styrlagar eftersom
“splinsen” inte bara forsoker approximera test kurvan utan aven tar hansyn
till dess derivator. Genom systemet paverkas aven styrsignalen och vi erhaller
omdjligt stora styrsignaler och accelerationer. Noggranheten i foljningen ar
alltid exemplarisk. Kapitel 8 behandlar rapportens huvudresultat.
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10 Matlab Programs

function x = mpri2iderO(spc_plot,t,n,cleargr,pointfcn,lambda)

%% THIS PROGRAM CALCULATES CONTROLLAWS FOR A ONE
DIMENSIONAL TRAJECTORY %%

%% spc_plot DETERMINES WHICH GRAPH TO BE DISPLAYED,
CHOSE AN INTEGER =<5 %%

%% t IS THE TIME PERIOD FOR WHICH THE SYSTEM
IS TO BE CONTROLLED %%

%% n ARE THE NUMBER OF POINTS AT THE SPECIFIED
TRAJECTORY, CHOSE t/n>1/10 %%

%% cleargr CLEARS THE CURRENT WINDOW, CHOSE 1 OR 0 %%

%% pointfcn SPECIFIES THE TRAJECTORY %%

%% lambda AFFECTS THE INSTABILITY OF THE SYSTEM %%

global ABh tn

%% THE SYSTEM )%

A=[ 0 1 ;

0 lambda];
B=[ 0 ;

1 ]1;
c=[101];

%% FUNCTION pointfcn DETERMINES THE SPECIFIED TRAJECTORY
%% NECESSARY FOR THE COMPOUND FUNCTION pointsini2 %%
if pointfcn==’pointsini2’;

£=5.2;

n=26;

end;

R=feval (pointfcn);

W
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%% CALCULATION OF THE INTEGRAL FROM 0 TO h %%

m=48; %% NUMBER OF POINTS BETWEEN INTERPOLATIONS,
CHOSE A MULTIPLE OF 6 %X
mp=n/6; %% DETERMINES THE PRECISION IN THE

SPLINE APPROXIMATION %%
tol=1e-08; %% THE NUMERIC ERROR TOLERANCE Y%

Mtau(:,1:2)=zeros(2);

tau=0;

for j=1:m

oldtau=tau;

tau=oldtau+h/m;

Mtau(:,2%j+1:2%j+2)= quad812mod(’integrand’,oldtau,tau,tol)
+ Mtau(:,2*j-1:2%j);

end;

M=Mtau(:,2*m+1:2*¥m+2);

e_Ah=expm(~-A*h) ;
Minv=inv(M);
ZZ=Minv*e_Ah;
WW=e_Ah’*ZZ+Minv;

WL=[WW(2,2)]; %% PARTITIONING MATRICES %%
ZLU=[ZZ2(2,2)]1;

ZLL=[2Z(2,2)];

WR=[WW(2,1)];

ZRU={ZZ(2,1)];

ZRL=[2Z(1,2)];

Ulu=[Minv(2,2)];

Uru=[Minv(2,1)];

%% FORMING OF THE RIGHT HAND SIDE OF THE BLOCKDIAGONAL
SYSTEM %%

for i=2:n
Dmega(i,1)=-ZRL*R(1,i-1)+HR*R(1,i)-ZRU*R(i,i+1);
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end;
Omega(1,1)= UruxR(1,1) - ZRU*R(1,2);
Omega(n+1,1)=ZRL*R(1,n) + (Uru-wWR)*R(1,n+1);

%% FORMING OF THE LEFT HAND SIDE OF THE BLOCKDIAGONAL

SYSTEM %%

for i=2:n
DD(i,i-1)=ZLL;
DD(i,i)=-WL;
DD(i,i+1)=ZLU;

end;

DD(1,1)=(lambda-Ulu) ;

DD(1,2)=2ZLU;

DD(n+1,n)=-ZLL;

DD(n+1,n+1)=(lambda+WL-Ulu) ;

DD=sparse(DD); %% SQUEEZING OUT ALL ZERO ELEMENTS

FROM MATRIX DD %%

%% GAUSSELIMINATION TO PRODUCE AN UPPER
TRIANGULAR SYSTEM %%

for i=1:n
2d=DD(i+1,1i)/DD(i,1);
DD(i+1,i)=DD(i+1,i)-zd*DD(i,i);
DD(i+1,i+1)=DD(i+1,i+1)-zd*DD(i,i+1);
Omega(i+1,1)=Omega(i+1,1)-zd*Omega(i,1);
end;

%% BACKSUBSTITUTION TO SOLVE FOR THE XVEL %%

xvel (1,n+1)=0mega(n+1,1)/DD(i+1,i+1);
for i=n:-1:1

xvel(i,i)=(0mega(i,1)-DD(i,i+1)*xve1(1,i+1))/DD(i,i);

end;
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%% MAKING OF THE STATE VECTOR Y%

for i=0:n
x(:,i+1)=[[R(1,i+1)]
[xvel(1,i+1)]1];
end;

if cleargr
clf;
hold on;
grid on;
end;

%% PLOTTING OF THE CALC/SPEC TRAJECTORY,VELOCITY,
CONTROLSIGNAL AND ACCELERATION %%

plotadm=0;
while spc_plot
if plotadm
if spc_plot<é
figure;
hold on;
grid on;
title([’One dim. traj: mpri2ider0.m lambda = ’,
num2str(lambda),’ n = ’,num2str(n)])
xlabel ([’Total error : *’,num2str(Total_error),’
Pointerror : ’,num2str(Point_error),’ Graph :
’,num2str(spc_plot),’ Time t’])
for k=0:n
plot (k*h,x(1,k+1),’0’)
end;
end;

end;

breakadm=0;

fadm=0; %% NORMALLY fadm=0, NECESSARY FOR WRITING OF

TEXTS IN THE PLOT %%



10 MATLAB PROGRAMS

for j=O:m
eAtau=expm(A*j*h/m) ;
%% CHOOSE e.g 2:n-3 TO AVOID PROBLEMS AT THE ENDPOINTS %%
for i=fadm:n-1
entry(:,i+1)=eAtau*(x(:,i+1)+Mtau(:,2%j+1:2%j+2)*
Minv*(e_Ah*x(:,i+2)-x(:,i+1)));
csignvec(:,i+1)=B’*expm(-A’*j*h/m)*Minv*
(e_Ah*x(:,i+2)-x(:,i+1));
if j==
if i==fadm;
entryl=entry(1l,fadm+1);
entry2=entry(2,fadm+1);
csignvecl=csignvec(l,fadm+1);
end;
end;
if rem(j,mp)==
if j<=m-mp
traject (1, j/mp*n+(i+1))=entry(1,i+1);
end;
end;
if j==m
if i==n-1
traject(1,6*n+1)=entry(1,i+1);
end;
end;
if spc_plot==
plot (i*h+j*h/m,entry(1,i+1),’.’) %% TRAJECTORY %%
plot (i*h+j*h/m,csignvec(1,i+1),’.?) %% CONTROL u %%
%% ACCELERATION %%
plot(i*h+j*h/m,lambda*entry(2,i+1)+
csignvec(1,i+1),’.?)
elseif spc_plot==
plot (i*h+j*h/m,entry(1,i+1),’.’) %% TRAJECTORY %%
plot (i*h+j*h/m,entry(2,i+1),’.’) %% VELOCITY %%
plot(i*h+j*h/m,csignvec(l,i+1),?.?) %% CONTROL u %%
%% ACCELERATION %%
plot (i*h+j*h/m,lambda*entry(2,i+1)+
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csignvec(1,i+1),’.?)
elseif spc_plot==3
plot (i*h+j*h/m,entry(1,i+1),’.?) %% TRAJECTORY %%
%% ACCELERATION %%
plot(i*h+j*h/m,lambda*entry(2,i+1)+
csignvec(1,i+1),’.’)
elseif spc_plot==
plot(i*h+j*h/m,entry(1,i+1),’.”) %% TRAJECTORY %%
plot(i*h+j*h/m,entry(2,i+1),’.”) %% VELOCITY %%
elseif spc_plot==5
plot (i*h+j*h/m,entry(1,i+1),’.”) %% TRAJECTORY %%
plot (i*h+j*h/m,csignvec(1,i+1),’.?) %% CONTROL u %%
else
disp(’ ’)
disp(’ NOT A VALID CHOICE ’)
breakadm=1;
end;
if breakadm
break;
end;
end;
if breakadm
break;
end;
end;
if spc_plot<6
ax=axis;
ax2=ax(1,2);
if ax2<1.5
xpos=3/4%0.2;
elseif ax2>=5
xpos=3/4;
else
xpos=0.25;
end;
if spc_plot<3
axd4=ax(1,4);
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if ax4<1
ax4=ax4x%*10;
if ax4<1
ax4=ax4x*10;
end;
end;
if ax4>10
ax4=ax4/10;
if ax4>10
ax4=ax4/10;
end;
end;
if rem(ax4,2)==
yadd=(ax(1,4)/4)*1/5;
else
yadd=(ax(1,4)/3)*1/5;
end;
ypos=lambda*entry2+csignvecl;
text (-xpos,ypos, [’ACC’]);
if abs(ypos-csignvecl)>yadd
text (-xpos,csignvect,[’CS u’]);
elseif ypos-csignveci>0
text (-xpos,csignveci-yadd, [’CS u’]);
else
text (-xpos,csignvecl+yadd, [’CS u’l);
end;
if spc_plot==
text (-xpos,entry2,[’VEL’]);
end;
end;
if spc_plot==
ypos=lambda*entry2+csignvecl;
text (-xpos,ypos, [?ACC’]);
end;
if spc_plot==
text (-xpos,entry2, [’VEL’]);
end;
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if spc_plot==
text (-xpos,csignveci, [’CS u’]);
end;
end;

%% ESTIMATION OF THE ACCURACY IN THE SPLINE
APPROXIMATION %%

if plotadm==
[Total_error,Average_error,Point_error,End_point_error]=
spline_error(pointfcn,R,traject);
Total_error
Average_error
Point_error
End_point_error
title([’One dim. traj: mpri2ider0.m lambda = ’,num2str
(lambda),’ n = ’,num2str(n)])
xlabel([’Total error : °’,num2str(Total_error),’ Point
error : ’,num2str(Point_error),’ Graph : 7,
num2str(spc_plot),’ Time t’])
if spc_plot<é6
for k=0:n
plot (k*h,x(1,k+1),’0’)
end;
end;
end;

plotadm=plotadm+l;

disp(’ ’)

disp(’ WOULD YOU LIKE TO SEE ANOTHER GRAPH OF THE CURRENT
SYSTEM AND ITS TRAJECTORY 7 ’)

disp(’ *)

disp(’ FINISH THE PROGRAM : 0 ’)

disp(’ DISPLAY THE TRAJECTORY, CONTROL u AND

ACCELERATION : 1 )
disp(’ DISPLAY THE TRAJECTORY, VELOCITY, CONTROL u AND

ACCELERATION : 2 °)
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disp(’ DISPLAY THE TRAJECTORY AND ACCELERATION : 3 M)
disp(’ DISPLAY THE TRAJECTORY AND VELOCITY : 4 )
disp(’ DISPLAY THE TRAJECTORY AND CONTROL u : 5 M)
spc_plot = input(’ MAKE YOUR CHOICE : 'Y

end;

clear global;

for k=2:plotadm
delete(k);

end;

end;

function [Q,cnt] = quad812mod(funfcn,a,b,tol)
%Alteration of the original matlab toolbox program.
%QUAD8 Numerical evaluation of an integral, higher order
% method. Q = QUAD8(’F’,A,B,TOL) approximates the

% integral of F(X) from to B to within a relative error
% of TOL. '’F’ is a string containing the name of the

% function. The function must return a 2*2-matrix

% output value if given an input value.

% Q = Inf is returned if an excessive recursion level

% is reached indicating a possibly singular integral.

% QUAD8 uses an adaptive recursive Newton Cotes 8 panel
A rule.

A Cleve Moler, 5-08-88.
% Copyright (c) 1984-94 by The MathWorks, Inc.

% [Q,cnt] = quad8(F,a,b,tol) also returns a function

4 evaluation count.

% Top level initialization, Newton-Cotes weights

w = [3956 23552 -3712 41984 -18160 41984 -3712 23552
3956]/14175;

x = a + (0:8)*(b-a)/8;

% set up function call
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for i=x
y = [y feval(funfcn,i)];
end;

% Adaptive, recursive Newton-Cotes 8 panel quadrature
Q0 = zeros(2);

[Q,cnt] = quad812stpmod(funfen,a,b,tol,0,w,x,y,Q0);
cnt = cnt + 9;

end;

function [Q,cnt] = quad81i2stpmod(FunFcn,a,b,tol,lev,
w,x0,£0,Q0)

%Alteration of the original matlab toolbox program.

%QUADSSTP Recursive function used by QUADS.

% [Q,cnt] = quad8stp(F,a,b,tol,lev,w,f,Q0) tries to

% approximate the integral of f(x) from a to b to

% within a relative error of tol. F is a string

% containing the name of f. The remaining arguments

% are generated by quad8mod or by the recursion.

% lev is the recursion level.

% v is the weights in the 8 panel Newton Cotes formula.
4 x0 is a vector of 9 equally spaced abscissa is the

2 interval.

A f0 is a matrix of the 9 function values at x.

% QO is an approximate value of the integral.

% Cleve Moler, 5-08-88.
% Copyright (c) 1984-94 by The MathWorks, Inc.

LEVMAX = 10;

% Evaluate function at midpoints of left and
right half intervals.

x = zeros(1,17);

x(1:2:17) = x0;

x(2:2:16) = (x0(1:8) + x0(2:9))/2;
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£(:,1:2)= £0(:,1:2);
for i=1:8
£(:,4%i-1:4%i) = feval(FunFcn,x(2*1i));
£(:,4*%i+1:4%i42) = (£0(:,2%i+1:2*%i+2));
end;

% Integrate over half intervals.
h = (b-a)/16;
Q1=0;Q2=0;
for i=1:9
Q1 = Q1 + h*w(i)*f(:,2%i-1:2%1);
Q2 = Q2 + h*w(10-i)*f(:,35-1i%2:36-i%2);
end;
Q = Q1 + Q2;
% Recursively refine approximations.
if norm(Q@ - QO0) > tol*norm(Q) & lev <= LEVMAX
c = (a+b)/2;
[Q1,cnt1] = quad812stpmod(FunFcn,a,c,tol/2,lev+1,
w,x(1:9),£(:,1:18),Q1);
[Q2,cnt2] = quad812stpmod(FunFcn,c,b,tol/2,lev+1,
w,x(9:17),£(:,17:34),0Q2);
Q =Q1 + Q2;
cnt = cnt + cntl + cnt2;
end
end;
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function x = mpri4iknovel(spc_plot,t,n,cleargr,pointfcn,
lambdal,lambda2,ep)

%% THIS PROGRAM CALCULATES CONTROLLAWS FOR A ONE
DIMENSIONAL TRAJECTORY %%

%% spc_plot DETERMINES WHICH GRAPH TO BE DISPLAYED,
CHOSE AN INTEGER =<9 %%

%% +t IS THE TIME PERIOD FOR WHICH THE SYSTEM IS

TO BE CONTROLLED %%

%% n ARE THE NUMBER OF POINTS AT THE SPECIFIED
TRAJECTORY, CHOSE t/n>1/10 %%

%% cleargr CLEARS THE CURRENT WINDOW, CHOSE 1 OR 0 %%

%% pointfcn SPECIFIES THE TRAJECTORY %/

%% lambdal AFFECTS THE INSTABILITY OF THE SYSTEM %%

%% lambda2 ALSO EFFECTS THE STABILITY OF THE SYSTEM,
CHOSE 11~-=12 %%

%% ep<>0 PUTS A ZERO IN THE TRANSFERFUNCTION %%

global ABhtn
%% THE SYSTEM %%

A=[ 10 0;
lambdal 1 O;
001;

0 0 lambda2];

o O O O

B=[ 0 ep 0 1]°’;

c=[ 100 0];

%% FUNCTION pointfcn DETERMINES THE SPECIFIED TRAJECTORY %%k
%% NECESSARY FOR THE COMPOUND FUNCTION pointsini2 %%

if pointfcn==’pointsini2’;
t=5.2;
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R=feval(pointfcn);

%% CALCULATION OF THE INTEGRAL FROM 0 TO h ¥%i

m=48; %% NUMBER OF POINTS BETWEEN INTERPOLATICN,
CHOSE A MULTIPLE OF 6 %%
mp=m/6; %% NEEDED FOR fcn spline_error THAT

DETERMINES THE PRECISION IN THE
SPLINE APPROXIMATION %%
tol=1e-08; %% THE NUMERIC ERROR TOLERANCE Y%

Mtau(:,1:4)=zeros(4);
tau=0;
for j=1:m
oldtau=tau;
tau=oldtau+h/m;
Mtau(:,4*j+1:4%j+4)= quad814mod(’integrand’,oldtau,tau,tol)
+ Mtau(:,4%j-3:4%j);
end;
M=Mtau(:,4*m+1:4*m+4);

%Y% FORMING OF THE MATRICES FOR THE BLOCKDIAGONAL SYSTEM %%

e_Ah=expm(-A*h);
Minv=inv(M);
ZZ=Minv*e_Ah;
WW=e_Ah’*ZZ+Minv;

%% CONTINUQOUS CONTROLLAW %%

WLDO=[ep*WW(2,2) +WW(4,2) ep*WW(2,3)+WW(4,3) ep*WW(2,4)+
wWW(4,4)];

ZLUDO=[ep*ZZ(2,2)*22(4,2) ep*ZZ(2,3)+ZZ(4,3) ep*ZZ(2,4)+
zZ(4,4)];
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ZLLDO=[ep*2Z(2,2)+ZZ(2,4) ep*ZZ(3,2)+Z2(3,4) ep*ZZ(4,2)+
2z(4,4)];

WRDO=[ep*WW(2,1) +WW(4,1)];

ZRUDO=[ep*2Z(2,1)+2Z(4,1)]1;

ZRLDO=[ep*zZ(1,2)+2Z(1,4)];

%% CONTINUOUS FIRST DIFFERENTIAL OF CONTROLLAW %%

WLD1=[ep*WW(l,2)+ep*lambda1*ww(2,2)+HV(3,2)+lambda2*WW(4,2)
ep*HW(i,3)+ep*lambda1*WW(2,3)+WW(3,3)+lambda2*HW(4,3)
ep*HH(i,4)+ep*lambda1*HW(2,4)+HW(3,4)+lambda2*HW(4,4)];

ZLUD1=[ep*ZZ(1,2)+ep*lambda1*ZZ(2,2)+ZZ(3,2)+lambda2*ZZ(4,2)

ep*ZZ(1,3)+ep*lambda1*2Z(2,3)+2Z(3,3)+lambda2*2Z(4,3)
ep*ZZ(1,4)+ep*lambdal1+ZZ(2,4)+ZZ(3,4)+lambda2+ZZ(4 ,4)]1;
ZLLD1=[ep*ZZ(2,1)+ep*lambda1*ZZ(2,2)+ZZ(2,3)+lambd32*ZZ(2,4)
ep*ZZ(S,1)+ep*1ambda1*ZZ(3,2)+ZZ(3,3)+lambda2*ZZ(3,4)
ep*ZZ(4,1)+ep*lambda1*ZZ(4,2)+ZZ(4,3)+lambda2*ZZ(4,4)];

HRD1=[ep*WW(1,1)+ep*1ambda1*HW(2,1)+HW(3,1)+lambda2*WW(4,1)];

ZRUD1=[ep*ZZ(1,1)+ep*lambda1*ZZ(2,1)+ZZ(3,1)+1ambda2*ZZ(4,1)];

ZRLD1=[ep*ZZ(1,1)+ep*lambda1*ZZ(1,2)+ZZ(1,3)+lambda2*ZZ(1,4)];

%% CONTINUOUS SECOND DIFFERENTIAL OF CONTROLLAW %%

WLD2=[ep*lambdal*WW(1,2)+(ep*lambdal2+1)*WW(2,2)+lambda2*
WW(3,2)+lambda2"2*WW(4,2) ep*lambdal*WW(1,3)+
(ep*lambdal~2+1)*WW(2,3)+lambda2*WW(3,3)+lambda2"~2*
WW(4,3) ep*lambdai*WW(1,4)+(ep*lambdal 2+1)*WW(2,4)+
lambda2*WW(3,4)+lambda2"2*WW(4,4)];

ZLUD2=[ep*lambda1*ZZ(1,2)+(ep*lambdal~2+1)*ZZ(2,2)+lambda2+*

ZZ(3,2)+lambda2"2%ZZ(4,2) ep*lambdal*ZZ(1,3)+
(ep*lambda1‘2+1)*ZZ(2,3)+1ambda2*ZZ(3,3)+
lambda2~2%*ZZ(4,3) ep*lambdai*ZZ(l,4)+(ep*lambda1“2+1)*
ZZ(2,4)+lambda2*ZZ(3,4)+lambda2"2%xZZ(4,4)];

ZLLD2=[ep*lambda1*ZZ(2,1)+(ep*lambdal~2+1)*ZZ(2,2)+lambda2*

ZZ(2,3)+lambda2"2+ZZ(2,4) ep*lambdai*ZZ(3,1)+
(ep*lambdal~2+1)*ZZ(3,2)+lambda2*ZZ(3,3)+1lambda2"2*
ZZ(3,4) ep*lambdai*ZZ(4,1)+(ep*lambda1‘2+1)*ZZ(4,2)+
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lambda2+ZZ(4,3)+lambda2"2%ZZ(4,4)];
HRD2=[ep*lambda1*HH(1,1)+(ep*lambda1‘2+1)*HH(2,1)+1ambda2*
WW(3,1)+lambda2"2*WW(4,1)];
ZRUD2=[ep*lambda1*ZZ(1,1)+(ep*1ambda1“2+1)*ZZ(2,1)+1ambda2*
ZZ(3,1)+lambda2"2*22(4,1)];
ZRLD2=[ep*lambda1*ZZ(1,1)+(ep*1ambda1“2+1)*ZZ(1,2)+1ambda2*
ZZ(1,3)+1ambda2“2*22(1,4)];

%% DIFFERENTIAL APPROXIMATIONS FOR THE BOUNDARY
CONDITIONS %%

yd10=(R(1,2)-R(1,1))/h;

yd11=(R(1,3)-R(1,2))/h;

yd12=(R(1,4)-R(1,3))/h;

ydin=(R(1,n+1)-R(1,n))/h;

ydin_1=(R(1,n)-R(1,n-1))/h;

ydin_2=(R(1,n-1)-R(1,n-2))/h;

u0=(yd10-ydi1) /h;

ul=(yd11-yd12)/h;

un=(ydin_1-ydin)/h;

un_1=(ydin_2-ydin_1)/h;

ud10=(u0-ul)/h;

udin=(un_1-un)/h;

X0=[yd10; u0; ud10]l; %% 3/4 of the the first state vector %)
Xn=[ydin; un; udinl; %% 3/4 of the the last state vector %)

%% FORMING OF THE RIGHT HAND SIDE OF THE
BLOCKDIAGONAL SYSTEM %%

J=1;

for i=2:n
Omega(j,1)=-ZRLDO*R(1,i-1)+HRDO*R(1,i)-ZRUDO*R(i,i+1);j=j+1;
Dmega(j,1)=—ZRLD1*R(1,i-1)+HRD1*R(1,i)-ZRUDi*R(l,i+1);j=j+1;
Omega(j,1)=-ZRLD2#R(1,i-1)+WRD2*R(1,1)-ZRUD2*R(1,i+1);j=j+1;
end;

Omega(1,1)=0Omega(1,1)-ZLLDO*XO0;
Omega(2,1)=0mega(2,1)-ZLLD1*X0;
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Omega(3,1)=0mega(3,1)-ZLLD2*X0;

Omega (3*n-5,1)=0mega(3*n-5,1)-ZLUDO*Xn;
Omega(3*n-4,1)=0mega(3*n-4,1)-ZLUD1*Xn;
Omega (3*n-3,1)=0Omega(3*n-3,1)-ZLUD2*Xn;

%% FORMING OF THE LEFT HAND SIDE OF THE
BLOCKDIAGONAL SYSTEM %%

for 1=1:3
DD(1,1i)=-WLDO(1,1i);
DD(2,i)=-WLD1(1,1);
DD(3,i)=-WLD2(1,i);
if n>2
DD(1,i+3)=ZLUDO(1,1i);
DD(2,i+3)=ZLUD1(1,i);
DD(3,i+3)=ZLUD2(1,1i);
end;
end;
for i=2:n-2
for j=-1:1
DD(3%i-2,3*%i-4+3)=ZLLD0(1,j+2);
DD(3%i-2,3*%i~-1+j)=-WLDO(1,j+2);
DD(3*i-2,3%i+2+j)=ZLUD0(1,j+2);
DD(3*i—1,3*i—4+j)=ZLLDl(1,j+2);
DD(3*i-1,3*%i-1+j)=-WLD1(1,j+2);
DD(3*i-1,3*i+2+j)=ZLUD1(1,j+2);
DD(3*i ,3%i-4+j)=ZLLD2(1,j+2);
DD(3*i ,3%i-1+j)=-WLD2(1,j+2);
DD(3*i ,3%i+2+j)=ZLUD2(1,j+2);
end;
end;
if n>2
for i=1:3
DD(3*n-5,3*n-9+1i)=ZLLD0(1,1);
DD(3*n-4,3*n-9+i)=ZLLD1(1,1i);
DD(3*n-3,3%n-9+i)=ZLLD2(1,1);
DD(3*n-5,3*n-6+i)=-WLDO(1,1);
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DD(3*n-4,3*n-6+i)=-WLD1(1,1);
DD(3#*n-3,3*n-6+i)=-WLD2(1,1);
end;
end;

DD=sparse(DD); %% SQUEEZING OUT ALL ZERO ELEMENTS
FROM MATRIX DD %%

%% GAUSSELIMINATION TO PRODUCE AN UPPER TRIANGULAR
SYSTEM %%

for k=2:3:3*%n-7
for l=k:k+4
if DD(k-1,k-1)"=0
zd=DD(1,k-1)/DD(k-1,k-1);
DD(1,:)=DD(1, :)-zd*DD(k~1,:);
Omega(l,1)=Omega(l,1)-zd*Omega(k-1,1);
end;
end;
for 1l=k+1:k+4
if DD(k,k)~=0
zd=DD(1,k)/DD(k,k);
DD(1,:)=DD(1, :)-zd*DD(k,:);
Omega(l,1)=Omega(l,1)-zd*0mega(k,1);
end;
end;
for 1=k+2:k+4
if DD(k+1,k+1)"=0
zd=DD(1,k+1)/DD(k+1,k+1);
DD(1,:)=DD(1, :)-zd*DD(k+1,:);
Omega(l,1)=Omega(l,1)-zd*Omega(k+1,1);
end;
end;
end;
k=3*n-5;
if DD(k,k)~=0
zd=DD(k+1,k) /DD (k,k) ;
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DD(k+1, :)=DD(k+1,:)-zd*DD(k, :);
Omega(k+1,1)=0Omega(k+1,1)-zd*Omega(k,1);
zd=DD(k+2,k)/DD(k,k);
DD (k+2, : )=DD(k+2,:)-zd*DD(k, :);
Omega(k+2,1)=Omega (k+2,1)-zd*Omega (k,1) ;
end;
if DD(k+1,k+1)"=0
zd=DD (k+2,k+1) /DD(k+1,k+1);
DD(k+2, :)=DD(k+2, :)-zd*DD(k+1,:);
Omega(k+2,1)=Omega (k+2,1)-zd*Omega (k+1,1);
end;

%% BACKSUBSTITUTION TO SOLVE FOR THE STATEVECTORS %%

ud1(n-1)=0mega(3*(n-1),1) /DD(3*(n-1) ,3*(n-1));
u(n-1)=(Omega(3*n-4,1)-DD(3*n-4,3*(n-1) )*udi(n-1))/
DD(3*n-4,3*n-4);
yd1(n-1)=(0Omega(3*n-5,1)-DD(3*n-5,3*(n-1))*udi(n-1)-
DD(3*n-5,3*n-4)*u(n-1))/DD(3*n-5,3%n-5) ;
if n>2
for k=n-2:-1:1
ud1(k)=(0mega(3*k,1)-DD(3*k,3*k+3)*ud1(k+1)-
DD(3*k,3*k+2)* u(k+1)-DD(3*k,3*k+1)*yd1(k+1))/
DD(3%k,3%k);
u(k)=(0mega(3*k-1,1)-DD(3*k-1,3*k+3)*ud1(k+1)-
DD (3*k~-1,3%k+2)*u(k+1)-DD(3*k-1,3*k+1)*yd1(k+1)-
DD (3*k-1,3*k)*ud1(k))/DD(3*k-1,3*k~-1);
yd1(k)=(Omega(3*k-2,1)-DD(3*k-2,3*k+3) *ud1(k+1)-
DD(3*k-2,3%k+2) *u(k+1)-DD(3*k-2,3*k+1) *yd1(k+1)
-DD (3%k-2,3%k)*ud1 (k) -DD(3*k-2,3*k-1)*u(k))/
DD(3*k-2,3*k-2);
end;
end;

%% MAKING OF THE STATEVECTORS %%

x(:,1)=[R(1,1); X0I;
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x(:,n+1)=[R(1,n+1); Xn];
for i=1:n-1

x(:,i+1)=[R(1,i+1); yd1(i); u(i); ud1i(i)];
end;

if cleargr
clf;
hold on;
grid on;
end;

%% PLOTTING OF THE CALC/SPEC TRAJECTORY,VELOCITY,
CONTROLSIGNAL AND ACCELERATION %%

plotadm=0;
while spc_plot
if plotadm
if spc_plot<10
figure;
hold on;
grid on;
title([’One dim. traj: mpri4iknovel.m 11 =
’ num2str(lambdal),’ 12 = ’ num2str(lambda2),’ ep =

» )num2str(ep),’ n = ’,num2str(n)])
xlabel([’Total error : ’,num2str(Total_error),
! Point error : ’,num2str(Point_error),’ Graph :

» ,num2str(spc_plot),’ Time t’])
if spc_plot<é
for k=0:n
plot(k*h,x(l,k+1);’o’)
end;
end;
end;
end;
breakadm=0;
fadm=0; %% NORMALLY fadm=0, NECESSARY FOR WRITING
OF TEXTS IN THE PLOT %%
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for j=0:m
eAtau=expm(A*j*h/m) ;
for i=fadm:n-1 %) CHOOSE e.g 2:n-3 TO AVOID
PROBLEMS AT THE ENDPOINTS %%
entry(:,i+1)=eAtau*(x(:,i+1)+Mtau(:,4*j+1:4*j+4)*
Minv*(e_Ah*x(:,i+2)-x(:,i+1)));
csignvec(:,i+1)=B’*expm(-A’*j*h/m)*Minv*(e_Ah*x(:,i+2)~-

x(:,i+1));
if j==
if i==fadnm;

entryl=entry(1,fadm+1);
entry2=entry(2,fadm+1);
entry3=entry(3,fadm+1);
entry4=entry(4,fadm+1);
csignveci=csignvec(l,fadm+1);
end;
end;
if rem(j,mp)==
if j<=m-mp
traject(1,j/mp*n+(i+1))=entry(1,i+1);
end;
end;
if j==m
if i==n-1
traject(1,6*n+1)=entry(1,i+1);
end;
end;
if spc_plot==1
plot (i*h+j*h/m,entry(1,i+1),’.’) %% TRAJECTORY %%
plot (i*h+j*h/m,entry(3,i+1),’.’) %% CONTROL u %%
%% ACCELERATION %%
plot(i*h+j*h/m,lambdal*entry(2,i+1)+
entry(3,i+1)+ep*csignvec(l,i+1),’.’)
elseif spc_plot==
plot(i*h+j*h/m,entry(1,i+1),’.?) %% TRAJECTORY %%
plot(i*h+j*h/m,entry(2,i+1),’.) %% VELOCITY %%
plot(i*h+j*h/m,entry(3,i+1),’.’) %% CONTROL u %%
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plot (i*h+j*h/m,lambdal*entry(2,i+1)+entry(3,i+1)+
ep*csignvec(1,i+1),’.?) %% ACCELERATION %o
elseif spc_plot==3
plot (i*h+j*h/m,entry(1,i+1),’.’) %% TRAJECTORY %%
plot(i*h+j*h/m,lambdai*entry(2,i+1)+entry(3,i+1)+
ep*csignvec(1,i+1),’.’) %% ACCELERATION %%
elseif spc_plot==4
plot(i*h+j*h/m,entry(1,i+1),’.”) %% TRAJECTORY %%
plot(i*h+j*h/m,entry(2,i+1),’.’) %% VELOCITY %%
elseif spc_plot==
plot (i*h+j*h/m,entry(1,i+1),’.") %% TRAJECTORY %%
plot (i*h+j*h/m,entry(3,i+1),’.’) %% CONTROL u %%
elseif spc_plot==
plot(i*h+j*h/m,entry(4,i+1),’.’) %’ CONTROL DER
u-dot %%
elseif spc_plot==
csignvec(:,i+1)=B’*expm(-A’*j*h/m)*Minv*
(e_Ah*x(:,i+2)-x(:,1i+1));
%% CONTROLSIGNAL w %%
plot (i*h+j*h/m,csignvec(l,i+1),’.”)
elseif spc_plot==8
csdivec(:,i+1)=B’*A’*expm(-A’*j*h/m)*Minv*
(e_Ah*x(:,i+2)-x(:,i+1));
%% CONTROL DER w-dot %%
plot (i*h+j*h/m,csdivec(l,i+1),’.’)
if j==
csdveci=csdivec(1,1);
end;
elseif spc_plot==
csd2vec(:,i+1)=B’*A’*A’*expm(-A’*j*h/m)*
Minv*(e_Ah*x(:,i+2)-x(:,i+1));
%% CONTROL DERx2 w-dot-dot %%
plot(i*h+j*h/m,csd2vec(l,i+1),’.’)
if j==
csdvec2=csd2vec(1,1);
end;
else
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disp(’ ?)

disp(’ NOT A VALID CHOICE ’)

breakadm=1;
end;
if breakadm
break;
end;
end;
if breakadm
break;
end;
end;
if spc_plot<10
ax=axis;
ax2=ax(1,2);
if ax2<1.5
xpos=3/4%0.2;
elseif ax2>=5
xpos=3/4;
else
xpos=0.25;
end;
if spc_plot<3
ax4=ax(1,4);
if ax4<1
ax4=ax4x*10;
if ax4<1
ax4=ax4*10;
end;
end;
if ax4>10
ax4=ax4/10;
if ax4>10
ax4=ax4/10;
end;
end;
if rem(ax4,2)==
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yadd=(ax(1,4)/4)*1/5;
else
yadd=(ax(1,4)/3)*1/5;
end;
ypos=lambdal*entry2+entry3+ep*csignvecl;
text (-xpos,ypos, [’ACC’]);
if abs(ypos-entry3)>yadd
text (-xpos,entry3,[’CS u’l);
elseif ypos-entry3>0
text (-xpos,entry3-yadd, [’CS u’]);
else
text (-xpos,entry3+yadd, [’CS u’]);
end;
if spc_plot==
text (-xpos,entry2,['VEL’]);
end;
end;
if spc_plot==
ypos=lambdal*entry2+entry3+ep*csignvecl;
text (~xpos,ypos, [’ACC’]);
end;
if spc_plot==4
text (-xpos,entry2, [’VEL’]);
end;
if spc_plot==5
text (-xpos,entry3,[’CS u’l);

end;
if spc_plot==

text (-xpos,entry4,[’ud1’]);
end;

if spc_plot==7
text (-xpos,csignvect, ['CS w’]);

end;
if spc_plot==

text (-xpos,csdvect, [’wd1’]);
end;

if spc_plot==
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text (-xpos,csdvec2, [’wd2’]);
end;
end;

%% ESTIMATION OF THE ACCURACY IN THE
SPLINE APPROXIMATION %%

if plotadm==
[Total_error,Average_error,Point_error,
End_point_error]=sp1ine_error(pointfcn,R,traject);
Total_error
Average_error
Point_error
End_point_error
title([’One dim. traj: mpri4iknovel.m 11 =
» num2str(lambdal),’ 12 = ’,num2str(lambda2),

) ep =’,num2str(ep),’ n = ’,num2str(n)])
xlabel([’Total error : ’,num2str(Total_error),
! Point error : ’,num2str(Point_error),’ Graph :

’ ,num2str(spc_plot),’ Time t'])
if spc_plot<é
for k=0:n
plot(k*h,x(1,k+1),’0’)
end;
end;
end;

plotadm=plotadm+1;

disp(’ )
disp(’ FOLLOWING OPTIONS ARE AVAILABLE : )
disp(’ ?)

disp(’ FINISH THE PROGRAM : 0 ’)

disp(’ DISPLAY THE TRAJECTORY, CONTROL u AND
ACCELERATION : 1 °’)

disp(’ DISPLAY THE TRAJECTORY, VELOCITY, CONTROL u AND
ACCELERATION : 2 ’)

disp(’ DISPLAY THE TRAJECTORY AND ACCELERATION : 3 ’)
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disp(’ DISPLAY THE TRAJECTORY AND VELOCITY : 4 )
disp(’ DISPLAY THE TRAJECTORY AND CONTROL u : 5 )
disp(’ DISPLAY THE FIRST DERIVATIVE OF THE CONTROL
u:6"’)
disp(’ DISPLAY THE CONTROLSIGNAL w : 7 )
disp(’ DISPLAY THE FIRST DERIVATIVE OF THE CONTROL
v :87)
disp(’ DISPLAY THE SECOND DERIVATIVE OF THE CONTROL
v :97?)
spc_plot = input(’ MAKE YOUR CHOICE : ’);

end;

clear global;

for k=2:plotadm
delete(k);

end;

end;

function [Q,cnt] = quad8i4mod(funfcn,a,b,tol)
%Alteration of the original matlab toolbox program.
%QUAD8 Numerical evaluation of an integral, higher order
% method. Q = QUAD8(’F’,A,B,TOL) approximates the

% integral of F(X) from to B to within a relative error
% of TOL. °’F’ is a string containing the name of the

% function. The function must return a 4*4-matrix

% output value if given an input value.

% Q = Inf is returned if an excessive recursion level

% is reached indicating a possibly singular integral.

% QUAD8 uses an adaptive recursive Newton Cotes 8 panel
% rule.

% Cleve Moler, 5-08-88.
yA Copyright (c) 1984-94 by The MathWorks, Inc.

A [Q,cnt] = quad8(F,a,b,tol) also returns a function
% evaluation count.
% Top level initialization, Newton-Cotes weights

w = [3956 23552 -3712 41984 -18160 41984 -3712 23552
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3956]/14175;
x = a + (0:8)*(b-a)/8;

% set up function call
for i=x

y = [y feval(funfcn,i)];
end;

% Adaptive, recursive Newton-Cotes 8 panel quadrature
Q0 = zeros(4);

[Q,cnt] = quad814stpmod(funfcn,a,b,tol,0,w,x,y,QO);
cnt = cnt + 9;

end;

function [Q,cnt] = quad8i4stpmod(FunFcn,a,b,tol,lev,
w,x0,£0,Q0)

%Alteration of the original matlab toolbox program.

%QUADSSTP Recursive function used by QUADS.

% [Q,cnt] = quad8stp(F,a,b,tol,lev,w,f,Q0) tries to

% approximate the integral of f(x) from a to b to

A within a relative error of tol. F is a string

A containing the name of f. The remaining arguments

% are generated by quad8mod or by the recursion.

% lev is the recursion level.

% w is the weights in the 8 panel Newton Cotes formula.
% x0 is a vector of 9 equally spaced abscissa is the

% interval.

% f0 is a matrix of the 9 function values at x.

A Q0 is an approximate value of the integral.

%  Cleve Moler, 5-08-88.
% Copyright (c) 1984-94 by The MathWorks, Inc.

LEVMAX = 10;

% Evaluate function at midpoints of left and
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right half intervals.
x = zeros(1,17);
x(1:2:17) = x0;
x(2:2:16) = (x0(1:8) + x0(2:9))/2;

£f(:,1:4)= £0(:,1:4);
for i=1:8
£f(:,8*%i-3:8*i) = feval(FunFcn,x(2*i));
£(:,8%i+1:8%i+4) = (£f0(:,4*i+1:4%i+4));
end;

% Integrate over half intervals.
h = (b-a)/16;
Q1=0,Q2=0;
for i1i=1:9
Q1 = Q1 + h*w(i)*f(:,4%i-3:4%1i);
Q2 = Q2 + h*w(10-1)*f(:,69-1%4:72-i*4);
end;
Q =0Q1 + Q2;
%4 Recursively refine approximations.
if norm{Q - Q0) > tol*norm{(Q) & lev <= LEVMAX
c = (a+b)/2;
[Q1,cnt1] = quad814stpmod(FunFcn,a,c,tol/2,lev+1,
w,x(1:9),f(:,1:36),Q1);
[Q2,cnt2] = quad8i4stpmod(FunFcn,c,b,tol/2,lev+1,

w,x(9:17),£(:,33:68),Q2);

Q =Q1 +Q2;

cnt = ¢cnt + cntl + cnt2;
end
end;
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function x = mpri5iknovel(spc_plot,t,n,cleargr,pointfcn,
lambdal,lambda2,ep)

wh
WA
wh
A A
wh
WA
wh
wh
i

W

THIS PROGRAM CALCULATES CONTROLLAWS FOR A ONE
DIMENSIONAL TRAJECTORY %Y

spc_plot DETERMINES WHICH GRAPH TO BE DISPLAYED,
CHOSE AN INTEGER =<11 %%

t IS THE TIME PERIOD FOR WHICH THE SYSTEM IS

TO BE CONTROLLED %%

n ARE THE NUMBER OF POINTS AT THE SPECIFIED
TRAJECTORY, CHOSE t/n>1/10 %%

cleargr CLEARS THE CURRENT WINDOW, CHOSE 1 OR 0 %%
pointfcn SPECIFIES THE TRAJECTORY %%

lambdal AFFECTS THE INSTABILITY OF THE SYSTEM %%
USE lambdai<>0 TO AVOID NUMERICAL PROBLEMS WHEN
DETERMINE THE MATRIX WW %%

lambda2 ALSO EFFECTS THE STABILITY OF THE SYSTEM,
CHOSE 11-=12 %%

ep<>0 PUTS A ZERO IN THE TRANSFERFUNCTION %%

global ABh tn

wh

A=[

B=[

c

L
W

wh

THE SYSTEM %%

100 0;
lambdal 1 0 0O;
001 0;

000 1;

0 0 0 lambda2];

O O O O O

0Oep 00 1]’;
1000 0];
FUNCTION pointfcn DETERMINES THE SPECIFIED TRAJECTORY

NECESSARY FOR THE COMPOUND FUNCTION pointsini2 %%

hh

84



10 MATLAB PROGRAMS 85

if pointfcn==’pointsin12’;
t=5.2;
n=26;

end;

R=feval(pointfcn);

%% CALCULATION OF THE INTEGRAL FROM 0 TO h %%

m=48; %% NUMBER OF POINTS BETWEEN INTERPOLATION,
CHOSE A MULTIPLE OF 6 %%
mp=m/6; %% NEEDED FOR fcn spline_error THAT DETERMINES

THE PRECISION IN THE SPLINE APPROXIMATION %%
tol=1e-08; Y% THE NUMERIC ERROR TOLERANCE %%

Mtau(:,1:5)=zeros(5);
tau=0;
for j=i:m
oldtau=tau;
tau=oldtau+h/m;
Mtau(:,5%j+1:5%j+5)= quad815mod(’integrand’,oldtau,tau,tol)
+ Mtau(:,5%j-4:5%j);
end;
M=Mtau(:,5*m+1:5%m+5);

%% FORMING OF THE MATRICES FOR THE BLOCKDIAGONAL SYSTEM Wh

e_Ah=expm(-A*h) ;
Minv=inv(M);
ZZ=Minv*e_Ah;
WW=e_Ah’*ZZ+Minv;

%% CONTINUQOUS CONTROLLAW %%

WLDO=[ep*WW (2,2)+WW(5,2) ep*WW(2,3)+WW(5,3)
ep*WW(2,4) +WW(5,4) ep*WW(2,5)+WW(5,5)];
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ZLUDO=[ep*ZZ(2,2)+2Z(5,2) ep*ZZ(2,3)+2Z(5,3)
ep*Z2(2,4)+2Z(5,4) ep*Z2(2,5)+2Z(5,5)];
ZLLDO=[ep*ZZ(2,2)+ZZ(2,5) ep*ZZ(3,2)+ZZ(3,5)
ep*2Z(4,2)+22(4,5) ep*2Z(5,2)+2Z(5,5)];
WRDO=[ep*WW(2,1)+WW(5,1)];
ZRUDO=[ep*ZZ(2,1)+2Z(5,1)];
ZRLDO=[ep*ZZ(1,2)+2Z(1,5)];

%% CONTINUOUS FIRST DIFFERENTIAL OF CONTROLLAW %%

HLD1=[ep*WW(1,2)+ep*lambda1*HW(2,2)+WW(4,2)+lambda2*ww(5,2)
ep*WW(i,3)+ep*lambda1*wW(2,3)+HW(4,3)+lambda2*WH(5,3)
ep*WW(1,4)+ep*lambdal*WwW(2,4)+WW(4,4)+lanbda2*WW(5,4)
ep*WW(1,5) +ep*lambdal*WW(2,5)+WW(4,5)+1lambda2*WW(5,5)];

ZLUDi=[ep*ZZ(1,2)+ep*1ambda1*ZZ(2,2)+ZZ(4,2)+1ambda2*ZZ(5,2)

ep*ZZ(1,3)+ep*lambda1*2Z(2,3)+ZZ(4,3)+lambda2*ZZ(5, 3)
ep*ZZ(l,4)+ep*lambda1*ZZ(2,4)+ZZ(4,4)+lambda2*ZZ(5,4)
ep*2Z(1,5) +ep*lambdai1*ZZ(2,5)+ZZ(4,5)+1lambda2*ZZ(5,5)]

ZLLD1=[ep*ZZ(2,1)+ep*lambda1*ZZ(2,2)+ZZ(2,4)+1ambda2*ZZ(2,5)

ep*ZZ(3,1)+ep*lambda1*ZZ(3,2)+ZZ(3,4)+1ambda2*ZZ(3,5)
ep*ZZ(4,1)+ep*lambdal*Z2Z(4,2)+ZZ(4,4)+1ambda2*ZZ(4,5)
ep*ZZ(5,1)+ep*lambdai1*Z2Z(5,2)+ZZ2(5,4) +lambda2*2Z(5,5)]

WRD1=[ep*WW(1,1)+ep*lambdal*WW(2,1)+WW(4,1)+lambda2*WW(5,1)];

ZRUD1=[ep*ZZ(1,1)+ep*lambdai*ZZ(2,1)+2Z(4,1)+lambda2+ZZ(5,1)]

ZRLD1=[ep*ZZ(1,1)+ep*lambda1*ZZ(1,2)+ZZ(1,4)+lambda2*ZZ(1,5)]

%% CONTINUQUS SECOND DIFFERENTIAL OF CONTROLLAW %Y

WLD2=[ep*lambdal*WW(1,2)+ep*lambdal~2*WW(2,2)+WW(3,2)+
lambda2*WW(4,2)+lambda2~2*WW(5,2) ep*lambdal*WW(1,3)+
ep*lambdal”~2*WW(2,3)+WW(3,3)+1lambda2*WW(4,3)+
lambda2~2*WW(5,3) ep*lambdal*WW(1,4)+ep*lambdal”2#
WW(2,4)+WW(3,4)+1lambda2*WW(4,4)+1lambda2"~2*WW(5,4)
ep*lambdal*WW(1,5)+ep*lambdal “2*WW(2,5)+WW(3,5)+
lambda2*WW(4,5)+1lambda2~2*WW(5,5)];

ZLUD2=[ep*1lambda1*ZZ(1,2)+ep*lambdal~2*ZZ(2,2)+ZZ(3,2)+

lambda2*2Z(4,2)+lambda2~2*ZZ(5,2) ep*lambdal*ZZ(1,3)+
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ep*lambdai“Q*ZZ(Q,3)+ZZ(3,3)+lambda2*ZZ(4,3)+
lambda2~2%ZZ(5,3) ep*lambdai*ZZ(l,4)+ep*1ambda1‘2*
ZZ(2,4)+ZZ(3,4)+1ambda2*ZZ(4,4)+lambda2'2*ZZ(5,4)
ep*lambdal*ZZ(l,5)+ep*1ambda1“2*ZZ(2,5)+ZZ(3,5)+
1ambda2*ZZ(4,5)+1ambda2“2*ZZ(5,5)];
ZLLD2=[ep*1ambda1*ZZ(2,1)+ep*lambda1'2*ZZ(2,2)+ZZ(2,3)+
1ambda2*ZZ(2,4)+lambda2“2*ZZ(2,5) ep*lambdal*ZZ(3,1)+
ep*lambdal‘z*zz(s,2)+ZZ(3,3)+1ambda2*zz(3,4)+
lambda2~2%ZZ(3,5) ep*lambdai*ZZ(4,1)+ep*1ambda1‘2*
ZZ(4,2)+ZZ(4,3)+1ambda2*ZZ(4,4)+lambda2“2*ZZ(4,5)
ep*lambdal*ZZ(S,1)+ep*1ambda1‘2*ZZ(5,2)+ZZ(5,3)+
lambda2*ZZ(5,4)+lambda2"2*ZZ(5,5)];
HRD2=[ep*1ambda1*WH(1,1)+ep*1ambda1‘2*WW(2,1)+WH(3,1)+
lambda2*WW(4,1)+lambda2~2*WW(5,1)];
ZRUDQ=[ep*lambda1*ZZ(1,1)+ep*lambda1'2*ZZ(2,1)+ZZ(3,1)+
lambda2*22(4,1)+1ambda2“2*22(5,1)];
ZRLDQ=[ep*lambda1*ZZ(1,1)+ep*lambda1*2*ZZ(1,2)+ZZ(1,3)+
1ambda2*ZZ(1,4)+1ambda2‘2*ZZ(1,5)];

%% CONTINUOUS THIRD DIFFERENTIAL OF CONTROLLAW 42

HLD3=[ep*1ambda1*2*HW(1,2)+(ep*lambda1“3+1)*HH(2,2)+lambda2*
WW(3,2)+lambda2"2*WW(4,2) +lambda2~3*WW(5,2)
ep*lambdal”2*WW(1,3)+(ep*lambdal”3+1)*WW(2,3)+1lambda2*
WW(3,3)+lambda2"2*WW(4,3)+lambda2~3*WW(5,3)
ep*lambdal”2*WW(1,4)+(ep*lambdal~3+1)*WH(2,4)+lambda2*
WW(3,4)+lambda2"2*WW(4,4)+lambda2"3*WW(5,4)
ep*lambdal‘Z*WW(l,5)+(ep*1ambda1‘3+1)*HW(2,5)+1ambda2*
WW(3,5)+lambda2"2*WW(4,5) +1lambda2~3*WW(5,5)];

ZLUD3= [ep*lambdal~2+*ZZ(1,2)+(ep*lambdal~3+1)*2Z(2,2)+lambda2*
77(3,2)+lambda2~2%*ZZ(4,2)+lambda2"3*ZZ(5,2)
ep*lambdal~2+ZZ(1,3)+(ep*lambdal~3+1)+Z2(2,3)+lambda2*
27(3,3)+lambda2"2*ZZ(4,3)+lambda2~3*ZZ(5,3)
ep*lambda1“2*ZZ(1,4)+(ep*lambda1‘3+1)*ZZ(2,4)+1ambda2*
272(3,4)+1ambda2~2%*2ZZ(4,4)+lambda2"3*2Z(5,4)
ep*lambdal~2%ZZ(1,5)+(ep*lambdal~3+1)*ZZ(2,5) +1lambda2*
77(3,5)+1ambda2~2*ZZ(4,5)+lambda2"~3*ZZ(5,5)];
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ZLLD3=[ep*lambda1”2*ZZ(2,1)+(ep*lambda1“3+1)*ZZ(2,2)+1ambda2*
ZZ(2,3)+1ambda2“2*ZZ(2,4)+lambda2“3*ZZ(2,5)
ep*lambda1“2*ZZ(3,1)+(ep*lambda1“3+1)*ZZ(3,2)+1ambda2*
ZZ(3,3)+1ambda2“2*ZZ(3,4)+1ambda2“3*ZZ(3,5)
ep*lambda1“2*22(4,1)+(ep*1ambda1'3+1)*ZZ(4,2)+1ambda2*
ZZ(4,3)+lambda2'2*ZZ(4,4)+lambda2“3*ZZ(4,5)
ep*lambdal‘Z*ZZ(S,1)+(ep*lambda1‘3+1)*ZZ(5,2)+lambda2*
ZZ(5,3)+lambda2"~2*ZZ(5,4)+1lambda2~3*ZZ(5,5)];

WRD3=[ep*lambdal~2+WW(1,1)+(ep*lambdal~3+1)*WW(2,1)+lambda2*

WH(3,1)+lambda2“2*ww(4,1)+lambda2“3*“"(5,1)];

ZRUD3=[ep*lambdal~2%2Z(1,1)+(ep*lambdal“3+1)*ZZ(2,1)+lambda2*
ZZ(3,1)+1ambda2’2*ZZ(4,1)+lambda2’3*ZZ(5,1)];

ZRLDS=[ep*lambdal“Z*ZZ(l,1)+(ep*lambda1‘3+1)*ZZ(1,2)+1ambda2*
ZZ(1,3)+lambda2"2*ZZ(1,4)+lambda2~3*ZZ(1,5)];

%% DIFFERENTIAL APPROXIMATIONS FOR THE BOUNDARY CONDITIONS %%

yd10=(R(1,2)-R(1,1))/h;
yd11=(R(1,3)-R(1,2))/h;
yd12=(R(1,4)-R(1,3))/h;
yd13=(R(1,5)-R(1,4))/h;
ydin=(R(1,n+1)-R(1,n))/h;
ydin_1=(R(1,n)-R(1,n-1))/h;
ydin_2=(R(1,n-1)-R(1,n-2))/h;
ydin_3=(R(1,n-2)-R(1,n-3))/h;
u0=(yd10-yd11) /h;
ul=(yd11-yd12) /h;
u2=(yd12-yd13) /h;
un=(ydin_1-ydin) /h;
un_1=(ydin_2-ydin_1)/h;
un_2=(ydin_3-ydin_2)/h;
ud10=(u0-ul1)/h;
udi11=(ul-u2)/h;
udin=(un_1-un)/h;
udin_1=Cun_2-un_1)/h;
ud20=(ud10-udi1) /h;
ud2n=(udin_1i-udin) /h;
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%% 4/5 of the the first state vector %%
X0=[yd10; u0; ud10; ud20];
%% 4/5 of the the last state vector %A
Xn=[ydin; un; udin; ud2n];

%% FORMING OF THE RIGHT HAND SIDE OF THE
BLOCKDIAGONAL SYSTEM %%

j=1;

for i=2:n
Umega(j,1)=-ZRLDO*R(1,i-1)+WRDO*R(1,i)-ZRUDO*R(l,i+1);
j=3+1;
Omega(j,1)=-ZRLD1*R(1,i-1)+WRD1*R(1,1)-ZRUD1*R(1,i+1);
J=j+1;
Omega(j,1)=-ZRLD2*R(1,i-1)+WRD2*R(1,1)-ZRUD2*R(1,i+1);
J=j+L;
Omega(j,1)=-ZRLD3*R(1,i-1)+WRD3*R(1,1)-ZRUD3*R(1,i+1);
J=i+1;

end;

Omega(1,1)=0mega(1,1)-ZLLDO*XO0;

Omega(2,1)=0mega(2,1)-ZLLD1*X0;

Omega(3,1)=0mega(3,1)-ZLLD2*X0;

Omega(4,1)=0Omega(4,1)-ZLLD3#X0;

Omega(4*n-7,1)=0Omega(4*n-7,1)-ZLUDO*Xn;

Omega(4*n-6,1)=0mega(4*n-6,1)-ZLUD1*Xn;

Omega(4*n-5,1)=0Omega(4*n-5,1)-ZLUD2*Xn;

Omega(4*n-4,1)=0Omega(4*n-4,1)-ZLUD3*Xn;

Y% FORMING OF THE LEFT HAND SIDE OF THE
BLOCKDIAGONAL SYSTEM %%

for i=1:4
DD(1,1i)=-WLDO(1,1i);
DD(2,i)=-WLD1(1,1i);
DD(3,i)=-WLD2(1,1);
DD(4,i)=-WLD3(1,1);
if n>2

89
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DD(1,i+4)=ZLUDO(1,1i);
DD(2,i+4)=ZLUD1(1,i);
DD(3,i+4)=ZLUD2(1,1i);
DD(4,i+4)=ZLUD3(1,i);
end;
end;
for i=2:n-2
for j=-1:2
DD(4*i-3,4*i-6+3)=ZLLDO(1,j+2);
DD(4%i-3,4%i-2+j)=-WLDO(1, j+2);
DD(4%i-3,4*i+2+3j)=ZLUDO(1,j+2);
DD(4%i-2,4*%i-6+3)=ZLLD1(1,j+2);
DD(4*i-2,4%i-2+j)=-WLD1(1,j+2);
DD(4*i-2,4%i+2+j)=ZLUD1(1,j+2);
DD(4*i-1,4*i-6+j)=ZLLD2(1,j+2);
DD(4*i-1,4%i-2+j)=-WLD2(1,3j+2);
DD(4*i-1,4*i+2+3)=ZLUD2(1,j+2);
DD(4*i, 4%i-6+j)=ZLLD3(1,j+2);
DD(4*i, 4*i-2+3)=-WLD3(1,j+2);
DD(4*i, 4*i+2+j)=ZLUD3(1,j+2);
end;
end;
if n>2
for i=1:4
DD(4*n-7,4*n-12+i)=ZLLD0(1,1);
DD(4*n-6,4*n-12+i)=ZLLD1(1,1i);
DD(4*n-5,4*n-12+1)=ZLLD2(1,1);
DD(4*n-4,4*n-12+1)=ZLLD3(1,1);
DD(4%n-7,4*n-8+i)=-WLD0O(1,i);
DD(4*n-6,4*n-8+i)=-WLD1(1,1i);
DD(4#n-5,4*n-8+1)=-WLD2(1,1i);
DD(4*n-4,4*n-8+i)=-WLD3(1,1);
end;
end;

DD=sparse(DD); %% SQUEEZING OUT ALL ZERO ELEMENTS
FROM MATRIX DD %%
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%% GAUSSELIMINATION TO PRODUCE AN UPPER TRIANGULAR SYSTEM W

for k=2:4:4*n-10
for 1=k:k+6
if DD(k-1,k-1)"=0
zd=DD(1,k-1)/DD(k-1,k-1);
DD(1,:)=DD(1,:)-zd*DD(k-1,:);
0mega(1,1)=0mega(l,1)-zd*0mega(k-1,1);
end;
end;
for 1=k+1:k+6
if DD(k,k)~=0
zd=DD(1,k) /DD(k,k);
DD(1,:)=DD(1, :)-zd*DD(k,:);
Omega(l,1)=Omega(l,1)-zd*Omega(k,1);
end;
end;
for 1l=k+2:k+6
if DD(k+1,k+1)~=0
zd=DD(1,k+1)/DD(k+1,k+1);
DD(1, :)=DD(1,:)-zd*DD(k+1,:);
Omega(1,1)=0mega(1,1)-zd*0mega(k+1,1);
end;
end;
for 1=k+3:k+6
if DD(k+2,k+2)"=0
2d=DD(1,k+2) /DD(k+2,k+2);
DD(1,:)=DD(1,:)~zd*DD(k+2,:);
Omega(l,1)=0Omega(l,1)-zd*Omega(k+2,1);
end;
end;
end;
k=4*n-7,;
if DD(k,k) =0
zd=DD(k+1,k)/DD(k,k) ;
DD(k+1,:)=DD(k+1,:)-zd*DD(k,:);
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Dmega(k+1,1)=0mega(k+1,1)-zd*0mega(k,1);
zd=DD(k+2,k) /DD(k,k) ;
DD (k+2, :)=DD(k+2, : )-zd*DD(k, :);
Onega (k+2,1)=Omega (k+2,1) -zd*Omega(k,1) ;
zd=DD(k+3,k) /DD(k,k) ;
DD(k+3,:)=DD(k+3,:)-zd*DD(k,:);
Omega (k+3,1)=Omega (k+3,1)-zd*Omega(k,1) ;
end;
if DD(k+1,k+1)"=0
zd=DD(k+2,k+1) /DD (k+1,k+1);
DD(k+2,:)=DD(k+2,:)-Zd*DD(k+1,:);
Omega(k+2,1)=Omega (k+2,1) -zd*Omega (k+1,1);
2d=DD (k+3,k+1) /DD (k+1,k+1);
DD(k+3, :)=DD(k+3, : )-zd*DD(k+1,:);
Omega(k+3,1)=Omega(k+3,1)-zd*Omega (k+1,1);
end;
if DD(k+2,k+2)~=0
zd=DD (k+3,k+2) /DD (k+2,k+2) ;
DD(k+3, :)=DD(k+3, :)-2zd*DD(k+2,:);
Omega(k+3,1)=Dmega(k+3,1)—zd*0mega(k+2,1);
end;

%% BACKSUBSTITUTION TO SOLVE FOR THE STATEVECTORS WA

ud2(n-1)=0mega(4*n-4,1)/DD(4*n-4,4*n-4);
udi(n-1)=(0mega(4*n-5,1)—DD(4*n—5,4*n-4)*ud2(n-1))/
DD(4*n-5,4*n-5);
u(n-1)=(0mega(4*n-6,1)—DD(4*n—6,4*n—4)*ud2(n—1)—
DD (4*n-6,4*n-5)*ud1(n-1))/DD(4*n-6,4*n-6) ;
ydl(n-1)=(0mega(4*n-7,1)-DD(4*n-7,4*n-4)*ud2(n-1)-
DD (4*n-7 ,4*n-5)*ud1(n-1)-DD(4%n-7,4%n-6)*u(n-1))/
DD(4*n-7,4*n-7);
if n>2
for k=n-2:-1:1
ud?2 (k)=(0Omega (4*k, 1) -DD(4¥k,4*k+4) *ud2(k+1) -
DD (4%k,4%k+3) *ud1 (k+1)-DD(4*k,4*k+2)*u(k+1) -
DD (4*k,4%k+1)*yd1(k+1))/DD(4%k,4%k) ;
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udi(k)=(0mega(4*k-1,1)-DD(4*k-1,4*k+4)*ud2(k+1)—
DD(4*k-1,4*k+3)*ud1(k+1)-DD(4*k-1,4*k+2)*u(k+1)-
DD(4*k-1,4*k+1)*ydi(k+1)-DD(4*k-1,4*k)*ud2(k))/
DD (4%k-1,4%k-1) ;
u(k)=(0mega(4*k-2,1)-DD(4*k-2,4*k+4)*ud2(k+1)-
DD(4*k-2,4*k+3)*udl(k+1)-DD(4*k-2,4*k+2)*u(k+1)-
DD(4*k—2,4*k+1)*ydi(k+1)-DD(4*k—2,4*k)*ud2(k)-
DD(4*k-2,4*k-1)*ud1(k))/DD(4*k-2,4*k-2);
ydi(k)=(0mega(4*k—3,1)-DD(4*k-3,4*k+4)*ud2(k+1)-
DD(4*k-3,4*k+3)*ud1(k+1)-DD(4*k-3,4*k+2)*u(k+1)-
DD(4*k-3,4*k+1)*ydi(k+1)—DD(4*k—3,4*k)*ud2(k)—
DD(4*k—3,4*k-1)*ud1(k)-DD(4*k-3,4*k-2)*u(k))/
DD(4%k-3,4%k-3) ;
end;
end;

%% MAKING OF THE STATEVECTORS W

x(:,1)=[R(1,1); X0];
x(:,n+1)=[R(1,n+1); Xnl;
for i=1:n-1
x(:,i+1)=[R(1,i+1); ydi(i); u(i); ud1(i); uwd2(i)];
end;

if cleargr
clf;
hold on;
grid on;
end;

%% PLOTTING OF THE CALC/SPEC TRAJECTORY,VELOCITY,
CONTROLSIGNAL AND ACCELERATION %%

plotadm=0;
while spc_plot
if plotadm
if spc_plot<12
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figure;
hold on;
grid on;
title([’One dim. traj: mpriS5iknovel.m 11 =
’ ,num2str(lambdal),’ 12 = ’,num2str(lambdal),’ ep =
’ ,num2str(ep),’ n = ’,num2str(n)])
xlabel([’Total error : ’,num2str(Total_error),
' Point error : ’,num2str(Point_error),’ Graph :
’ ,num2str(spc_plot),’ Time t’])
if spc_plot<é
for k=0:n
plot(k*h,x(1,k+1),’0’)
end;
end;
end;
end;
breakadm=0;
fadm=0; %% NORMALLY fadm=0, NECESSARY FOR WRITING OF
TEXTS IN THE PLOT %%
for j=0:m
eAtau=expm(A*j*h/m) ;
for i=fadm:n-1 %% CHOOSE e.g 2:n-3 TO AVOID
PROBLEMS AT THE ENDPOINTS %%
entry(:,i+1)=eAtau*(x(:,i+1)+Mtau(:,5%j+1:5%j+5)*
Minv*(e_Ah*x(:,i+2)-x(:,i+1)));
csignvec(:,i+1)=B’*expm(-A’*j*h/m)*Minv*
(e_Ah#*x(:,i+2)-x(:,i+1));
if j==
if i==fadm;
entryil=entry(1l,fadm+1);
entry2=entry(2,fadm+1);
entry3=entry(3,fadm+1);
entry4=entry(4,fadm+1);
entryS=entry(5,fadm+1);
csignvecl=csignvec(1,1);
end; 0
end;
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if rem(j,mp)==
if j<=m-mp
traject(l,j/mp*n+(i+1))=entry(1,i+1);
end;
end;
if j==m
if i==n-1
traject(i,6*n+1)=entry(1,i+1);
end;
end;
if spc_plot==
plot(i*h+j*h/m,entry(1,i+1),’.’) %% TRAJECTORY %%
plot(i*h+j*h/m,entry(3,i+1),’.’) %% CONTROL u Wi
plot(i*h+j*h/m,1ambda1*entry(2,i+1)+entry(3,i+1)+
ep*csignvec(l,i+1),’.”) %Y, ACCELERATION %%
elseif spc_plot==
plot(i*h+j*h/m,entry(1,i+1),’.”) %% TRAJECTORY W
plot(i*h+j*h/m,entry(2,i+1),’.”) %4 VELOCITY %k
plot(i*h+j*h/m,entry(3,i+1),’.’) %% CONTROL u %%
plot(i*h+j*h/m,lambdai*entry(2,i+1)+entry(3,i+1)+
ep*csignvec(1,i+1),”.”) %% ACCELERATION %
elseif spc_plot==
plot (i*h+j*h/m,entry(1,i+1),’.’) %% TRAJECTORY WA
plot(i*h+j*h/m,1ambda1*entry(2,i+1)+entry(3,i+1)+
ep*csignvec(l,i+1),’.’) %% ACCELERATION %%
elseif spc_plot==4
plot (i*h+j*h/m,entry(1,i+1),’.”) %A TRAJECTORY %
plot(i*h+j*h/m,entry(2,i+1),’.’) %% VELOCITY %4
elseif spc_plot==
plot(i*h+j*h/m,entry(1,i+1),’.’) %% TRAJECTORY %%
plot (i*h+j*h/m,entry(3,i+1),’.’) %% CONTROL u W
elseif spc_plot==6
%% CONTROL DER u-dot %%
plot (i*h+j*h/m,entry(4,i+1),’.’)
elseif spc_plot==
%% CONTROL DERx2 u-dot-dot %%
plot (i*h+j*h/m,entry(5,i+1),’.”)
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elseif spc_plot==8
csignvec(:,i+1)=B’*expm(-A’*j*h/m)*Minv*
(e_Ah*x(:,i+2)-x(:,i+1));
%% CONTROLSIGNAL w %%
plot (i*h+j*h/m,csignvec(1,i+1),’.’)
elseif spc_plot==9
csdivec(:,i+1)=B’*A’*expm(-A’*j*h/m)*Minv*
(e_Ah*x(:,i+2)-x(:,i+1));
%% CONTROL DER w-dot %%
plot (i*h+j*h/m,csdivec(l,i+1),’.’)
if j==
csdveci=csdivec(i,1);
end;
elseif spc_plot==10
csd2vec(:,i+1)=B’*A’*A’*expm(-A’*j*h/m)*Minv*
(e_Ah*x(:,i+2)-x(:,i+1));
%% CONTROL DERx2 w-dot-dot %%
plot(i*h+j*h/m,csd2vec(1,i+1),’.’)
if j==
csdvec2=csd2vec(i,1);
end;
elseif spc_plot==11
csd3vec(:,i+1)=B’*A’*A’*A’*expm(-A’*j*h/m)*
Minv*(e_Ah#*x(:,i+2)-x(:,i+1));
%% CONTROL DERx3 w-dot-dot-dot %%
plot (i*h+j*h/m,csd3vec(1,i+1),’.’)
if j==
csdvec3=csd3vec(1,1);
end;
else
disp(’ 7)
disp(’ NOT A VALID CHOICE ’)
breakadm=1;
end;
if breakadm
break;
end;
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end;
if breakadm
break;
end;
end;
if spc_plot<12
ax=axis;
ax2=ax(1,2);
if ax2<1.5
xpos=3/4%0.2;
elseif ax2>=5H
xpos=3/4;
else
xpos=0.25;
end;
if spc_plot<3
ax4=ax(1,4);
if ax4<1
ax4=ax4*10;
if ax4<1
ax4=ax4*10;
end;
end;
if ax4>10
ax4=ax4/10;
if ax4>10
ax4=ax4/10;
end;
end;
if rem(ax4,2)==
yadd=(ax(1,4)/4)*1/5;
else
yadd=(ax(1,4)/3)*1/5;
end;
ypos=1ambdai*entry2+entry3+ep*csignveci;
text(-xpos,ypos,[’ACC’]);
if abs(ypos-entry3)>yadd
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text (-xpos,entry3,[’CS u’l);
elseif ypos-entry3>0
text (-xpos,entry3-yadd, [’CS u’l);
else
text (-xpos,entry3+yadd, [’CS u’]);
end;
if spc_plot==
text (-xpos,entry2,[’VEL’]);
end;
end;
if spc_plot==
ypos=lambda1*entry2+entry3+ep*csignvec1;
text (-xpos,ypos, [’ACC’]);
end;
if spc_plot==
text (-xpos,entry2,[’VEL’1);
end;
if spc_plot==5
text (-xpos,entry3,[’CS u’l);

end;
if spc_plot==

text (-xpos,entry4,[’ud1’]);
end;
if spc_plot==

text (-xpos,entry5,[’ud2’]);
end;
if spc_plot==

text (-xpos,csignvecl, [’CS w']);
end;
if spc_plot==

text (-xpos,csdvect, [’wd1’]);
end;

if spc_plot==10
text(-xpos,csdvecQ,[’wd2’]);
end;
if spc_plot==11
text (-xpos,csdvec3, [’wd3’]);
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end;
end;

%% ESTIMATION OF THE ACCURACY IN THE
SPLINE APPROXIMATION %%

if plotadm==
[Total,error,Average_error,Point_error,End_point_error]=
spline_error(pointfcn,R,traject);
Total_error
Average_error
Point_error
End_point_error
title([’One dim. traj: mpriSiknovel.m 11 =
’ num2str(lambdal),’ 12 = > num2str(lambda2),’ ep =
» ,num2str(ep),’ n = > num2str(n)])
xlabel([’Total error : ' num2str(Total_error),
) Point error : ’,num2str(Point_error),’ Graph :
' ,num2str(spc_plot),’ Time t’])
if spc_plot<6
for k=0:n
plot (k*h,x(1,k+1),’0")
end;
end;
end;

plotadm=plotadm+1;

disp(’ )
disp(’ FOLLOWING OPTIONS ARE AVAILABLE : ’)
disp(’ )

disp(’ FINISH THE PROGRAM : 0 ’)

disp(’ DISPLAY THE TRAJECTORY, CONTROL u AND
ACCELERATION : 1 ’)

disp(’ DISPLAY THE TRAJECTORY, VELOCITY, CONTROL u AND
ACCELERATION : 2 ')

disp(’ DISPLAY THE TRAJECTORY AND ACCELERATION : 3 ")
disp(’ DISPLAY THE TRAJECTORY AND VELOCITY : 4 ')

99



10 MATLAB PROGRAMS

disp(’ DISPLAY THE
disp(’ DISPLAY THE
disp(’ DISPLAY THE
7))

CONTROL u

disp(® DISPLAY THE
disp(’ DISPLAY THE
disp(’ DISPLAY THE

CONTROL w : 10 ’)
disp(’ DISPLAY THE
CONTROL w : 11 ')

spc_plot = input(’

end;

clear global;

for k=2:plotadm
delete(k);

end;
end;

TRAJECTORY AND CONTROL u : 5 ’)

FIRST DERIVATIVE OF THE CONTROL u :

SECOND DERIVATIVE OF THE

CONTROLSIGNAL w : 8 ’)

FIRST DERIVATIVE OF THE CONTROL w :

SECOND DERIVATIVE OF THE
THIRD DERIVATIVE OF THE

MAKE YOUR CHOICE : ’);
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6 ’)

function [Q,cnt] = quad815mod(funfcn,a,b,tol)
%Alteration of the original matlab toolbox program.

YQUAD8 Numerical evaluation of an integral, higher order

A
h
%
h
h
h
h
A
h
h
4
h
h
h

method. Q = QUADS8(’F’,A,B,TOL) approximates the
integral of F(X) from to B to within a relative error

of TOL.

'F’ is a string containing the name of the

function. The function must return a 5*5-matrix
output value if given an input value.

Q = Inf is returned if an excessive recursion level
is reached indicating a possibly singular integral.

QUAD8 uses an adaptive recursive Newton Cotes 8 panel

rule.

Cleve Moler, 5-08-88.

Copyright (c) 1984-94 by The MathWorks, Inc.
[Q,cnt] = quad8(F,a,b,tol) also returns a function
evaluation count.

Top level initialization, Newton-Cotes weights
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[3956 23552 -3712 41984 -18160 41984 -3712 23552
3956]/14175;

A
(]

a + (0:8)*(b-a)/8;

X

% set up function call

for i=x
y = [y feval(funfen,i)];
end;

% Adaptive, recursive Newton-Cotes 8 panel quadrature
Q0 = zeros(5);

[Q,cnt] = quad81i5stpmod(funfen,a,b,tol,0,w,x,y,Q0);
cnt = cnt + 9;

end;

function [Q,cnt] = quad81i5stpmod(FunFcn,a,b,tol,lev,
w,x0,£0,Q0)

%Alteration of the original matlab toolbox program.

%QUADSSTP Recursive function used by QUADS.

% [Q,cnt] = quad8stp(F,a,b,tol,lev,w,f,Q0) tries to

% approximate the integral of f(x) from a to b to

% within a relative error of tol. F is a string

% containing the name of f. The remaining arguments

% are generated by quad8mod or by the recursion.

% lev is the recursion level.

% w is the weights in the 8 panel Newton Cotes formula.
% x0 is a vector of 9 equally spaced abscissa is the

% interval.

% f0 is a matrix of the 9 function values at x.

% QO is an approximate value of the integral.

% Cleve Moler, 5-08-88.
% Copyright (c) 1984-94 by The MathWorks, Inc.
LEVMAX = 10;

% Evaluate function at midpoints of left and
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right half intervals.
x = zeros(1,17);
x(1:2:17) = x0;
x(2:2:16) = (x0(1:8) + x0(2:9))/2;

£(:,1:5)= £0(:,1:5);
for i=1:8
£(:,10%i-4:10%i) = feval(FunFcn,x(2*i));
£(:,10%i+1:10%i+5) = (£0(:,5%i+1:5%i+5));
end;

% Integrate over half intervals.
h = (b-a)/16;
Q1=0;Q2=0;
for i=1:9
Q1 Qi + h*w(i)*£(:,5%i-4:5%i);
Q2 = Q2 + h*w(10-1)*f(:,86-1*5:90-1%5);
end;
Q =Q1+Q2;
%% Recursively refine approximations.
if norm(Q - Q0) > tol*norm(Q) & lev <= LEVMAX
c = (a+b)/2;
[Q1,cnt1]

quad8153tpmod(FunFcn,a,c,tol/2,lev+1,
w,x(1:9),£(:,1:45),Q1);

[Q2,cnt2] = quad8153tpmod(FunFcn,c,b,tol/2,lev+1,
w,x(9:17),£(:,41:85),Q2);
Q =Q1 + Q2;
cnt = cnt + cntl + cnt2;
end

end;




10 MATLAB PROGRAMS 103

function res = integrand(v)

vy THIS SUBPROGRAM DETERMINE THE INTEGRAND OF THE MATRIX
CONSTANT M %%

global A B
e_AvB=expm(-A*v)*B;

res = e_AvB*e_AVB’;
end;

function [Total_error,Average_error,Point_error,
End_point_error]=sp1ine_error(pointfcn,R,traject)

global h t n

Total_error=0;
Point_error=0;
n=6*n;
Rp=feval(pointfcn);
n=n/6;
h=t/n;
for i=0:n-1
for j=0:5
Total_error=Total_error+abs(traject(l,j*n+1+i)~-
Rp(1,i*6+j+1));
if j==
Point_error=Point_error+abs(traject(1,i+1)-R(1,i+1));
end;
end;
end;
Average_error=Total_error/(6*n);
End_point_error=abs(traject(1,6*n+1)-R(1,n+1));
end;
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function R=pointexpll
% R = 1x(n+1)-matrix.
global h t n

¥% TIME INTERVAL FOR RENEWAL OF THE TRAJECTORY %%
h=t/n;

for j=0:h:n*h
R(i,j/h+1)=(1-exp(-3/2*(j-t/2)))/(1+exp(-3/2*(j-t/2)));

end;

end;

function R=pointsini2
% R = 1x(n+1)-matrix.
global h t n

¥Y% TIME INTERVAL FOR RENEWAL OF THE TRAJECTORY %/
h=t/n;
Y% I APOLOGIZE FOR THE "SMART" PROGRAMING %h
adm=n*3/26;
for j=1:adm
R(1,j)=0;
end;
for j=0:h:(n-2%adm)*h
R(1,j/h+adm+1)=1/10%(1+sin(-pi/2+j*pi/2));
end;
for j=1l:adm
R(1,j-adm+n+1)=0;
end;
end;
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function R=pointstepl
% R = 1*(n+1)-matrix.
global h t n

h=t/n;

for j=0:h:n*h
R(1,j/h+1)=1/2%(1+sign(j-(£/2+0.01)));

end;

end;
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